Derleme
BibTex RIS Kaynak Göster

Kemik yapımını artıran uygulamalar: derleme

Yıl 2025, Cilt: 42 Sayı: 1, 43 - 56, 03.01.2025

Öz

Kemik dokusu yaşam boyunca yeniden şekillenerek sürekli olarak kendini onarır ve yeniler. Kemiğin yeniden şekillenmesinde osteoprogenitör hücreler, osteoblastlar, osteoklastlar ve osteositler görev alır. Kemiğin yeniden şekillenme süreci, dolaşımdaki çeşitli hormonlar ve diğer lokal düzenleyici faktörler tarafından düzenlenir. Travma, kalıtsal eksiklikler ve patojeniteler kemik kaybına neden olabilmektedir. Klinik pratikte ise var olan kemik kaybını onarmak ya da rejenerasyonunu sağlamak oldukça zorlayıcı bir durumdur. “Doku mühendisliği” kavramının ortaya konulmasından bu yana son 25 yıldır kemik doku rejenerasyonu için stratejiler sürekli olarak gelişmektedir. Doku mühendisliğinde kemik yapımını desteklemek amacıyla çeşitli taşıyıcı iskele sistemleri, osteojenik özelliğe sahip mezenkimal kök hücreler ve osteoindüktif özellikte olan büyüme faktörleri, ilaçlar ve hormonlar araştırma konusu olmuştur. Nanoteknolojinin de rejeneratif mühendislik alanında uygulanmaya başlanması, taşıma sistemlerinin doku rejenerasyonu için gerekli olan biyouyumluluk, kimyasal ve mekanik özelliklerinin gelişmesini sağlarken aynı zamanda osteoindüktif materyallerin ve osteojenik hücrelerin salım konsantrasyonlarının kontrol edilebilmesini sağlamıştır. Bu derleme; kemik rejenerasyonunun artırılmasında osteoindüktif materyallerin güncel literatürler doğrultusunda mekanizmalarını, etkinliklerini ve klinik kullanımdaki yerlerini ortaya koymak ve ileride yapılabilecek çalışmalara ışık tutması amacıyla hazırlanmıştır.

Kaynakça

  • Murugaiyan K, Amirthalingam S, Hwang NS-Y, Jayakumar R. Role of FGF-18 in Bone Regeneration. J Funct Biomater 2023;14:36.
  • Kazimierczak P, Przekora A. Osteoconductive and osteoinductive surface modifications of biomaterials for bone regeneration: A concise review. Coatings 2020;10:971.
  • Charoenlarp P, Rajendran AK, Iseki S. Role of fibroblast growth factors in bone regeneration. Inflamm Regen 2017;37:10.
  • Gronowicz G, Jacobs E, Peng T, Zhu L, Hurley M, Kuhn LT. Calvarial bone regeneration is enhanced by sequential delivery of FGF-2 and BMP-2 from layer-by-layer coatings with a biomimetic calcium phosphate barrier layer. Tissue Eng Part A 2017;23:1490-501.
  • Liu Y, Guo L, Li X, Liu S, Du J, Xu J, et al. Challenges and tissue engineering strategies of periodontal-guided tissue regeneration. Tissue Eng Part C Methods 2022;28:405-19.
  • Jin H, Ji Y, Cui Y, Xu L, Liu H, Wang J. Simvastatin-incorporated drug delivery systems for bone regeneration. ACS Biomater Sci Eng 2021;7:2177-91.
  • Jing Y, Chen X. Bone Microenvironment. In: Su J, Chen X, Jing Y, editors. Biomaterials Effect on the Bone Microenvironment: Fabrication, Regeneration, and Clinical Applications. 1st ed. Wiley-VCH; 2023. p.1-41.
  • Zhu T, Cui Y, Zhang M, Zhao D, Liu G, Ding J. Engineered three dimensional scaffolds for enhanced bone regeneration in osteonecrosis. Bioact Mater 2020;5:584-601.
  • Zhang X, Xing H, Qi F, Liu H, Gao L, Wang X. Local delivery of insulin/IGF-1 for bone regeneration: carriers, strategies, and effects. J Nanotheranostics 2020;4:242-55.
  • Seppänen-Kaijansinkko, R. Hard Tissue Engineering. In: Seppänen- Kaijansinkko, R. Tissue Engineering in Oral and Maxillofacial Surgery. 1st ed. Springer Nature; 2019. p. 85-96.
  • Chang J, Zhang X, Dai K. Bioactive materials for bone regeneration. 1st ed. Academic Press; 2020. p.65-9.
  • Nazirkar G, Singh S, Dole V, Nikam A. Effortless effort in bone regeneration: a review. Int J Dent Oral Health 2014;6:120-4.
  • Bal Z, Kushioka J, Kodama J, Kaito T, Yoshikawa H, Korkusuz P, et al. BMP and TGFβ use and release in bone regeneration. Turk J Med Sci 2020;50:1707-22.
  • Srouji S, Blumenfeld I, Rachmiel A, Livne E. Bone defect repair in rat tibia by TGF-β1 and IGF-1 released from hydrogel scaffold. Cell Tissue Bank 2004;5:223-30.
  • Martin V, Bettencourt A. Bone regeneration: Biomaterials as local delivery systems with improved osteoinductive properties. Mater Sci Eng C Mater Biol Appl 2018;82:363-71.
  • Suárez-López del Amo F, Monje A, Padial-Molina M, Tang Z, Wang H-L. Biologic agents for periodontal regeneration and implant site development. Biomed Res Int 2015;2015:957518.
  • Mbalaviele G, Sheikh S, Stains JP, Salazar VS, Cheng SL, Chen D, et al. β-Catenin and BMP-2 synergize to promote osteoblast differentiation and new bone formation. J Cell Biochem 2005;94:403-18.
  • Gürbüz S, Demirtaş TT, Yüksel E, Karakeçili A, Doğan A, Gümüşderelioğlu M. Multi-layered functional membranes for periodontal regeneration: Preparation and characterization. Mater Lett 2016;178:256-9.
  • Chung YI, Ahn KM, Jeon SH, Lee SY, Lee JH, Tae G. Enhanced bone regeneration with BMP-2 loaded functional nanoparticle-hydrogel complex. J Control Release 2007;121:91-9.
  • Kim C-S, Kim J-I, Kim J, Choi S-H, Chai J-K, Kim C-K, et al. Ectopic bone formation associated with recombinant human bone morphogenetic proteins-2 using absorbable collagen sponge and beta tricalcium phosphate as carriers. Biomaterials 2005;26:2501-7.
  • Pelaez M, Susin C, Lee J, Fiorini T, Bisch FC, Dixon DR, et al. Effect of rh BMP-2 dose on bone formation/maturation in a rat critical size calvarial defect model. J Clin Periodontol 2014;41:827-36.
  • Sivashanmugam A, Charoenlarp P, Deepthi S, Rajendran A, Nair SV, Iseki S, et al. Injectable shear-thinning CaSO4/FGF-18-incorporated Chitin–PLGA hydrogel enhances bone regeneration in mice cranial bone defect model. ACS Appl Mater Interfaces 2017;9:42639-52.
  • Choukroun, J, Adda, F, Schoeffler, C, Vervelle, A. P. R. F. Une opportunité en paro-implantologie: le PRF. Implantodontie 2001;42:e62.
  • Pandey P, Khan F, Upadhyay TK, Seungjoon M, Park MN, Kim B. New insights about the PDGF/PDGFR signaling pathway as a promising target to develop cancer therapeutic strategies. Biomed Pharmacother 2023;161:114491.
  • Gillman CE, Jayasuriya AC. FDA-approved bone grafts and bone graft substitute devices in bone regeneration. Mater Sci Eng C Mater Biol App 2021;130:112466.
  • Küçüktürkmen B, Öz UC, Toptaş M, Devrim B, Saka OM, Bilgili H, et al. Development of Zoledronic Acid Containing Biomaterials for Enhanced Guided Bone Regeneration. J Pharm Sci 2021;110:3200-7.
  • Priyadarshini V, Maity S, Amruthesh A. Bisphosphonates and Periodontics. J Cardiovasc Dis Res 2021;12:1899-908.
  • Sharma A, Pradeep A. Clinical efficacy of 1% alendronate gel as a local drug delivery system in the treatment of chronic periodontitis: a randomized, controlled clinical trial. J Periodontol 2012;83:11-8.
  • Lane N, Armitage GC, Loomer P, Hsieh S, Majumdar S, Wang HY, et al. Bisphosphonate therapy improves the outcome of conventional periodontal treatment: results of a 12-month, randomized, placebo controlled study. J Periodontol 2005;76:1113-22.
  • Tenenbaum HC, Shelemay A, Girard B, Zohar R, Fritz PC. Bisphosphonates and periodontics: potential applications for regulation of bone mass in the periodontium and other therapeutic/diagnostic uses. J Periodontol 2002;73:813-22.
  • Malden N, Lopes V. An epidemiological study of alendronate related osteonecrosis of the jaws. A case series from the south-east of Scotland with attention given to case definition and prevalence. J Bone Miner Metab 2012;30:171-82.
  • de Campos Kajimoto N, de Paiva Buischi Y, Loomer PM, Bromage TG, Ervolino E, Fucini SE, et al. Adjuvant therapy with 1% alendronate gel for experimental periodontitis treatment in rats. J Periodontal Implant Sci 2021;51:374-85.
  • Park K-W, Yun Y-P, Kim SE, Song H-R. The effect of alendronate loaded biphasic calcium phosphate scaffolds on bone regeneration in a rat tibial defect model. Int J Mol Sci 2015;16:26738-53.
  • Carvalho Dutra B, Oliveira AMSD, Oliveira PAD, Miranda Cota LO, Silveira JO, Costa FO. Effects of topical application of 1% sodium alendronate gel in the surgical treatment of periodontal intrabony defects: A 6-month randomized controlled clinical trial. J Periodontol 2019;90:1079-87.
  • De Almeida J, Ervolino E, Bonfietti LH, Novaes VCN, Theodoro LH, Fernandes LA, et al. Adjuvant therapy with sodium alendronate for the treatment of experimental periodontitis in rats. J Periodontol 2015;86:1166-75.
  • Pradeep A, Sharma A, Rao NS, Bajaj P, Naik SB, Kumari M. Local drug delivery of alendronate gel for the treatment of patients with chronic periodontitis with diabetes mellitus: a double-masked controlled clinical trial. J Periodontol 2012;83:1322-8.
  • Pradeep A, Kumari M, Rao NS, Naik SB. 1% alendronate gel as local drug delivery in the treatment of Class II furcation defects: a randomized controlled clinical trial. J Periodontol 2013;84:307-15.
  • Kanoriya D, Pradeep A, Singhal S, Garg V, Guruprasad C. Synergistic approach using platelet-rich fibrin and 1% alendronate for intrabony defect treatment in chronic periodontitis: a randomized clinical trial. J Periodontol 2016;87:1427-35.
  • Wanikar I, Rathod S, Kolte AP. Clinico-radiographic evaluation of 1% alendronate gel as an adjunct and smart blood derivative platelet rich fibrin in grade II furcation defects. J Periodontol 2019;90:52-60.
  • Li M, Wan P, Wang W, Yang K, Zhang Y, Han Y. Regulation of osteogenesis and osteoclastogenesis by zoledronic acid loaded on biodegradable magnesium-strontium alloy. Sci Rep 2019;9:933.
  • Li JP, Li P, Hu J, Dong W, Liao NN, Qi MC, et al. Early Healing of Hydroxyapatite-Coated Implants in Grafted Bone of Zoledronic Acid– Treated Osteoporotic Rabbits. J Periodontol 2014;85:308-16.
  • Koparal M, Gülsün B, Deveci E, Agacayak KS, Hamidi A. Effect of Zoledronic Acid Application on Different Graft Materials in Calvarial Bone Defect Models. An Experimental Analysis. Anal Quant Cytopathol Histpathol 2016;38:117-25.
  • Yang X-j, Wang F-q, Lu C-b, Zou J-w, Hu J-b, Yang Z, et al. Modulation of bone formation and resorption using a novel zoledronic acid loaded gelatin nanoparticles integrated porous titanium scaffold: an in vitro and in vivo study. Biomed Mater 2020;15:055013.
  • Ahmed B, Alkhouri I, Albassal A, Shehada A. An Evaluation of the Effectiveness of Local Delivery of Zoledronic Acid in Accelerating Bone Healing After the Extraction of Mandibular Third Molars. Cureus 2023;15:e35503.
  • Özer T, Guliyeva V, Aktaş A, Barış E, Ocak M. Effects of a locally administered risedronate/autogenous bone graft combination on bone healing in a critical-size rabbit defect model. J Orthop Surg Res 2023;18:1-11. Mostafa AA, Mahmoud AA, Hamid MAA, Basha M, El-Okaily MS,Abdelkhalek AFA, et al. An in vitro/in vivo release test of risedronate drug loaded nano-bioactive glass composite scaffolds. Int J Pharm 2021;607:120989.
  • Marie P.J, Felsenberg D, Brandi M.L. How strontium ranelate, via opposite effects on bone resorption and formation, prevents osteoporosis. Osteoporos Int 2011;22:1659–67.
  • Jerzy Przedlacki. Strontium ranelate in post-menopausal osteoporosis. Endokrynol Pol 2011;62:65-72.
  • Horak P, Skácelová M, Kazi, A. Role of Strontium Ranelate in the Therapy of Osteoporosis. J Rheum Dis Treat 2017;3:1-6.
  • Bonnelye E, Chabadel A, Saltel F, Jurdic P. Dual effect of strontium ranelate: stimulation of osteoblast differentiation and inhibition of osteoclast formation and resorption in vitro. Bone 2008;42:129-38.
  • Marx D, Rahimnejad Yazdi A, Papini M, Towler M. A review of the latest insights into the mechanism of action of strontium in bone. Bone Reports 2020;12:100273.
  • Zacchetti G, Dayer R, Rizzoli R, Ammann P. Systemic treatment with strontium ranelate accelerates the filling of a bone defect and improves the material level properties of the healing bone. Biomed Res Int 2014;2014:549785.
  • Masalskas BF, Martins Júnior W, Leoni GB, Faloni APS, Marcaccini AM, Silva Sousa YTC, et al. Local delivery of strontium ranelate promotes regeneration of critical size bone defects filled with collagen sponge. J Biomed Mater Res A 2018;106:333-41.
  • Henriques Lourenço A, Neves N, Ribeiro-Machado C, Sousa SR, Lamghari M, Barrias CC, et al. Injectable hybrid system for strontium local delivery promotes bone regeneration in a rat critical-sized defect model. Sci Rep 2017;7:5098.
  • Rosa JAD, Sakane K K, Santos K C P, Corrêa V B, Arana-Chavez V E, Oliveira J X D. Strontium Ranelate Effect on the Repair of Bone Defects and Molecular Components of the Cortical Bone of Rats. Braz Dent J 2016;27:502–7.
  • Murali VP, Guerra FD, Ghadri N, Christian JM, Stein SH, Jennings JA, et al. Simvastatin loaded chitosan guided bone regeneration membranes stimulate bone healing. J Periodontal Res 2021;56:877-84.
  • Abdel Nasser Atia G, Shalaby HK, Zehravi M, Ghobashy MM, Ahmad Z, Khan FS, et al. Locally Applied Repositioned Hormones for Oral Bone and Periodontal Tissue Engineering: A Narrative Review. Polymers 2022;14:2964.
  • Dang M, Koh AJ, Jin X, McCauley LK, Ma PX. Local pulsatile PTH delivery regenerates bone defects via enhanced bone remodeling in a cell-free scaffold. Biomaterials 2017;114:1-9.
  • Huang J, Lin D, Wei Z, Li Q, Zheng J, Zheng Q, et al. Parathyroid hormone derivative with reduced osteoclastic activity promoted bone regeneration via synergistic bone remodeling and angiogenesis. Small 2020;16:e1905876.
  • Zou Z, Wang L, Zhou Z, Sun Q, Liu D, Chen Y, et al. Simultaneous incorporation of PTH (1–34) and nano-hydroxyapatite into Chitosan/Alginate Hydrogels for efficient bone regeneration. Bioact Mater 2021;6:1839-51.
  • Wojda SJ, Marozas IA, Anseth KS, Yaszemski MJ, Donahue SW. Impact of release kinetics on efficacy of locally delivered parathyroid hormone for bone regeneration applications. Tissue Eng Part A 2021;27:246-55.
  • Wang Y, Hao Z, Zhang Y, Hu Y, Chen T, Yan F, et al. Recombinant PTH modification: A new strategy for a multifunctional CaP material to enhance bone regeneration. Compos B Eng 2022;247:110289.
  • Göker F, Ersanlı S, Arısan V, Cevher E, Güzel EE, İşsever H, et al. Combined effect of parathyroid hormone and strontium ranelate on bone healing in ovariectomized rats. Oral Dis 2018;24:1255-69.
  • Wang Y, Wang J, Zheng J, Yu M, Cai L, Zhang S, et al. Ectopic osteogenesis by type I collagen loaded with a novel synthesized PTHrelated peptide-1 in vivo. J Biomed Mater Res A 2020;108:166-77.
  • Liedert A, Wagner L, Seefried L, Ebert R, Jakob F, Ignatius A. Estrogen receptor and Wnt signaling interact to regulate early gene expression in response to mechanical strain in osteoblastic cells. Biochem Biophys Res Commun 2010;394:755-9.
  • Chen X, Zhu X, Hu Y, Yuan W, Qiu X, Jiang T, et al. EDTAmodified 17β-estradiol-laden upconversion nanocomposite for bonetargeted hormone replacement therapy for osteoporosis. Theranostics. 2020;10:3281.
  • Cottart CH, Nivet-Antoine V, Laguillier-Morizot C, Beaudeux JL. Resveratrol bioavailability and toxicity in humans. Mol Nutr Food Res 2010;54:7-16.
  • Ososki AL, Kennelly EJ. Phytoestrogens: a review of the present state of research. Phytother Res 2003;17:845-69.
  • Murgia D, Mauceri R, Campisi G, De Caro V. Advance on resveratrol application in bone regeneration: progress and perspectives for use in oral and maxillofacial surgery. Biomolecules 2019;9:94.
  • Bhattarai G, Poudel SB, Kook S-H, Lee J-C. Resveratrol prevents alveolar bone loss in an experimental rat model of periodontitis. Acta Biomater 2016;29:398-408.
  • Li L, Yu M, Li Y, Li Q, Yang H, Zheng M, et al. Synergistic antiinflammatory and osteogenic n-HA/resveratrol/chitosan composite microspheres for osteoporotic bone regeneration. Bioact Mater 2021;6:1255-66.
  • Sri KH, Ganapathy D, Nallasamy D, Venugopalan S, Sivaswamy V, Kamath SM. Sustained release of resveratrol from fused deposition modelling guided 3D porous scaffold for bone tissue engineering. Process Biochem 2023;131:188-98.
  • Ahmadipour S, Varshosaz J, Hashemibeni B, Safaeian L, Manshaei M, Sarmadi A. Calcitonin-loaded octamaleimic acid–silsesquioxane nanoparticles in hydrogel scaffold support osteoinductivity in bone regeneration. Pharm Dev Technol 2021;26:220-32.
  • Xu J, Wang J, Chen X, Li Y, Mi J, Qin L. The effects of calcitonin gene-related peptide on bone homeostasis and regeneration. Curr Osteoporos Rep 2020;18:621-32.
  • Jia S, Zhang SJ, Wang XD, Yang ZH, Sun YN, Gupta A, et al. Calcitonin gene‑related peptide enhances osteogenic differentiation and recruitment of bone marrow mesenchymal stem cells in rats. Exp Ther Med 2019;18:1039-46.

Applications enhancing bone formation: a review

Yıl 2025, Cilt: 42 Sayı: 1, 43 - 56, 03.01.2025

Öz

Bone tissue constantly reshapes and regenerates itself throughout life. Osteoprogenitor cells, osteoblasts, osteoclasts, and osteocytes play roles in bone reshaping. The process of bone remodeling is regulated by various hormones and local regulatory factors circulating in the body. Trauma, genetic deficiencies, and pathologies can lead to bone loss. In clinical practice, repairing existing bone loss or promoting regeneration is a challenging task. Over the past 25 years since the concept of "tissue engineering" emerged, strategies for bone tissue regeneration have been continuously evolving. Various scaffold systems that support bone formation, mesenchymal stem cells with osteogenic properties, and growth factors, drugs, and hormones with osteoinductive properties have been extensively researched in tissue engineering to enhance bone regeneration. The application of nanotechnology in regenerative engineering has further improved the biocompatibility, chemical, and mechanical properties of delivery systems required for tissue regeneration, while also allowing control over the release concentrations of osteoinductive materials and osteogenic cells. This review aims to shed light on the mechanisms, effectiveness, and clinical applications of osteoinductive materials in enhancing bone regeneration, based on current literature. The goal is to provide insights for future research and studies in this field.

Kaynakça

  • Murugaiyan K, Amirthalingam S, Hwang NS-Y, Jayakumar R. Role of FGF-18 in Bone Regeneration. J Funct Biomater 2023;14:36.
  • Kazimierczak P, Przekora A. Osteoconductive and osteoinductive surface modifications of biomaterials for bone regeneration: A concise review. Coatings 2020;10:971.
  • Charoenlarp P, Rajendran AK, Iseki S. Role of fibroblast growth factors in bone regeneration. Inflamm Regen 2017;37:10.
  • Gronowicz G, Jacobs E, Peng T, Zhu L, Hurley M, Kuhn LT. Calvarial bone regeneration is enhanced by sequential delivery of FGF-2 and BMP-2 from layer-by-layer coatings with a biomimetic calcium phosphate barrier layer. Tissue Eng Part A 2017;23:1490-501.
  • Liu Y, Guo L, Li X, Liu S, Du J, Xu J, et al. Challenges and tissue engineering strategies of periodontal-guided tissue regeneration. Tissue Eng Part C Methods 2022;28:405-19.
  • Jin H, Ji Y, Cui Y, Xu L, Liu H, Wang J. Simvastatin-incorporated drug delivery systems for bone regeneration. ACS Biomater Sci Eng 2021;7:2177-91.
  • Jing Y, Chen X. Bone Microenvironment. In: Su J, Chen X, Jing Y, editors. Biomaterials Effect on the Bone Microenvironment: Fabrication, Regeneration, and Clinical Applications. 1st ed. Wiley-VCH; 2023. p.1-41.
  • Zhu T, Cui Y, Zhang M, Zhao D, Liu G, Ding J. Engineered three dimensional scaffolds for enhanced bone regeneration in osteonecrosis. Bioact Mater 2020;5:584-601.
  • Zhang X, Xing H, Qi F, Liu H, Gao L, Wang X. Local delivery of insulin/IGF-1 for bone regeneration: carriers, strategies, and effects. J Nanotheranostics 2020;4:242-55.
  • Seppänen-Kaijansinkko, R. Hard Tissue Engineering. In: Seppänen- Kaijansinkko, R. Tissue Engineering in Oral and Maxillofacial Surgery. 1st ed. Springer Nature; 2019. p. 85-96.
  • Chang J, Zhang X, Dai K. Bioactive materials for bone regeneration. 1st ed. Academic Press; 2020. p.65-9.
  • Nazirkar G, Singh S, Dole V, Nikam A. Effortless effort in bone regeneration: a review. Int J Dent Oral Health 2014;6:120-4.
  • Bal Z, Kushioka J, Kodama J, Kaito T, Yoshikawa H, Korkusuz P, et al. BMP and TGFβ use and release in bone regeneration. Turk J Med Sci 2020;50:1707-22.
  • Srouji S, Blumenfeld I, Rachmiel A, Livne E. Bone defect repair in rat tibia by TGF-β1 and IGF-1 released from hydrogel scaffold. Cell Tissue Bank 2004;5:223-30.
  • Martin V, Bettencourt A. Bone regeneration: Biomaterials as local delivery systems with improved osteoinductive properties. Mater Sci Eng C Mater Biol Appl 2018;82:363-71.
  • Suárez-López del Amo F, Monje A, Padial-Molina M, Tang Z, Wang H-L. Biologic agents for periodontal regeneration and implant site development. Biomed Res Int 2015;2015:957518.
  • Mbalaviele G, Sheikh S, Stains JP, Salazar VS, Cheng SL, Chen D, et al. β-Catenin and BMP-2 synergize to promote osteoblast differentiation and new bone formation. J Cell Biochem 2005;94:403-18.
  • Gürbüz S, Demirtaş TT, Yüksel E, Karakeçili A, Doğan A, Gümüşderelioğlu M. Multi-layered functional membranes for periodontal regeneration: Preparation and characterization. Mater Lett 2016;178:256-9.
  • Chung YI, Ahn KM, Jeon SH, Lee SY, Lee JH, Tae G. Enhanced bone regeneration with BMP-2 loaded functional nanoparticle-hydrogel complex. J Control Release 2007;121:91-9.
  • Kim C-S, Kim J-I, Kim J, Choi S-H, Chai J-K, Kim C-K, et al. Ectopic bone formation associated with recombinant human bone morphogenetic proteins-2 using absorbable collagen sponge and beta tricalcium phosphate as carriers. Biomaterials 2005;26:2501-7.
  • Pelaez M, Susin C, Lee J, Fiorini T, Bisch FC, Dixon DR, et al. Effect of rh BMP-2 dose on bone formation/maturation in a rat critical size calvarial defect model. J Clin Periodontol 2014;41:827-36.
  • Sivashanmugam A, Charoenlarp P, Deepthi S, Rajendran A, Nair SV, Iseki S, et al. Injectable shear-thinning CaSO4/FGF-18-incorporated Chitin–PLGA hydrogel enhances bone regeneration in mice cranial bone defect model. ACS Appl Mater Interfaces 2017;9:42639-52.
  • Choukroun, J, Adda, F, Schoeffler, C, Vervelle, A. P. R. F. Une opportunité en paro-implantologie: le PRF. Implantodontie 2001;42:e62.
  • Pandey P, Khan F, Upadhyay TK, Seungjoon M, Park MN, Kim B. New insights about the PDGF/PDGFR signaling pathway as a promising target to develop cancer therapeutic strategies. Biomed Pharmacother 2023;161:114491.
  • Gillman CE, Jayasuriya AC. FDA-approved bone grafts and bone graft substitute devices in bone regeneration. Mater Sci Eng C Mater Biol App 2021;130:112466.
  • Küçüktürkmen B, Öz UC, Toptaş M, Devrim B, Saka OM, Bilgili H, et al. Development of Zoledronic Acid Containing Biomaterials for Enhanced Guided Bone Regeneration. J Pharm Sci 2021;110:3200-7.
  • Priyadarshini V, Maity S, Amruthesh A. Bisphosphonates and Periodontics. J Cardiovasc Dis Res 2021;12:1899-908.
  • Sharma A, Pradeep A. Clinical efficacy of 1% alendronate gel as a local drug delivery system in the treatment of chronic periodontitis: a randomized, controlled clinical trial. J Periodontol 2012;83:11-8.
  • Lane N, Armitage GC, Loomer P, Hsieh S, Majumdar S, Wang HY, et al. Bisphosphonate therapy improves the outcome of conventional periodontal treatment: results of a 12-month, randomized, placebo controlled study. J Periodontol 2005;76:1113-22.
  • Tenenbaum HC, Shelemay A, Girard B, Zohar R, Fritz PC. Bisphosphonates and periodontics: potential applications for regulation of bone mass in the periodontium and other therapeutic/diagnostic uses. J Periodontol 2002;73:813-22.
  • Malden N, Lopes V. An epidemiological study of alendronate related osteonecrosis of the jaws. A case series from the south-east of Scotland with attention given to case definition and prevalence. J Bone Miner Metab 2012;30:171-82.
  • de Campos Kajimoto N, de Paiva Buischi Y, Loomer PM, Bromage TG, Ervolino E, Fucini SE, et al. Adjuvant therapy with 1% alendronate gel for experimental periodontitis treatment in rats. J Periodontal Implant Sci 2021;51:374-85.
  • Park K-W, Yun Y-P, Kim SE, Song H-R. The effect of alendronate loaded biphasic calcium phosphate scaffolds on bone regeneration in a rat tibial defect model. Int J Mol Sci 2015;16:26738-53.
  • Carvalho Dutra B, Oliveira AMSD, Oliveira PAD, Miranda Cota LO, Silveira JO, Costa FO. Effects of topical application of 1% sodium alendronate gel in the surgical treatment of periodontal intrabony defects: A 6-month randomized controlled clinical trial. J Periodontol 2019;90:1079-87.
  • De Almeida J, Ervolino E, Bonfietti LH, Novaes VCN, Theodoro LH, Fernandes LA, et al. Adjuvant therapy with sodium alendronate for the treatment of experimental periodontitis in rats. J Periodontol 2015;86:1166-75.
  • Pradeep A, Sharma A, Rao NS, Bajaj P, Naik SB, Kumari M. Local drug delivery of alendronate gel for the treatment of patients with chronic periodontitis with diabetes mellitus: a double-masked controlled clinical trial. J Periodontol 2012;83:1322-8.
  • Pradeep A, Kumari M, Rao NS, Naik SB. 1% alendronate gel as local drug delivery in the treatment of Class II furcation defects: a randomized controlled clinical trial. J Periodontol 2013;84:307-15.
  • Kanoriya D, Pradeep A, Singhal S, Garg V, Guruprasad C. Synergistic approach using platelet-rich fibrin and 1% alendronate for intrabony defect treatment in chronic periodontitis: a randomized clinical trial. J Periodontol 2016;87:1427-35.
  • Wanikar I, Rathod S, Kolte AP. Clinico-radiographic evaluation of 1% alendronate gel as an adjunct and smart blood derivative platelet rich fibrin in grade II furcation defects. J Periodontol 2019;90:52-60.
  • Li M, Wan P, Wang W, Yang K, Zhang Y, Han Y. Regulation of osteogenesis and osteoclastogenesis by zoledronic acid loaded on biodegradable magnesium-strontium alloy. Sci Rep 2019;9:933.
  • Li JP, Li P, Hu J, Dong W, Liao NN, Qi MC, et al. Early Healing of Hydroxyapatite-Coated Implants in Grafted Bone of Zoledronic Acid– Treated Osteoporotic Rabbits. J Periodontol 2014;85:308-16.
  • Koparal M, Gülsün B, Deveci E, Agacayak KS, Hamidi A. Effect of Zoledronic Acid Application on Different Graft Materials in Calvarial Bone Defect Models. An Experimental Analysis. Anal Quant Cytopathol Histpathol 2016;38:117-25.
  • Yang X-j, Wang F-q, Lu C-b, Zou J-w, Hu J-b, Yang Z, et al. Modulation of bone formation and resorption using a novel zoledronic acid loaded gelatin nanoparticles integrated porous titanium scaffold: an in vitro and in vivo study. Biomed Mater 2020;15:055013.
  • Ahmed B, Alkhouri I, Albassal A, Shehada A. An Evaluation of the Effectiveness of Local Delivery of Zoledronic Acid in Accelerating Bone Healing After the Extraction of Mandibular Third Molars. Cureus 2023;15:e35503.
  • Özer T, Guliyeva V, Aktaş A, Barış E, Ocak M. Effects of a locally administered risedronate/autogenous bone graft combination on bone healing in a critical-size rabbit defect model. J Orthop Surg Res 2023;18:1-11. Mostafa AA, Mahmoud AA, Hamid MAA, Basha M, El-Okaily MS,Abdelkhalek AFA, et al. An in vitro/in vivo release test of risedronate drug loaded nano-bioactive glass composite scaffolds. Int J Pharm 2021;607:120989.
  • Marie P.J, Felsenberg D, Brandi M.L. How strontium ranelate, via opposite effects on bone resorption and formation, prevents osteoporosis. Osteoporos Int 2011;22:1659–67.
  • Jerzy Przedlacki. Strontium ranelate in post-menopausal osteoporosis. Endokrynol Pol 2011;62:65-72.
  • Horak P, Skácelová M, Kazi, A. Role of Strontium Ranelate in the Therapy of Osteoporosis. J Rheum Dis Treat 2017;3:1-6.
  • Bonnelye E, Chabadel A, Saltel F, Jurdic P. Dual effect of strontium ranelate: stimulation of osteoblast differentiation and inhibition of osteoclast formation and resorption in vitro. Bone 2008;42:129-38.
  • Marx D, Rahimnejad Yazdi A, Papini M, Towler M. A review of the latest insights into the mechanism of action of strontium in bone. Bone Reports 2020;12:100273.
  • Zacchetti G, Dayer R, Rizzoli R, Ammann P. Systemic treatment with strontium ranelate accelerates the filling of a bone defect and improves the material level properties of the healing bone. Biomed Res Int 2014;2014:549785.
  • Masalskas BF, Martins Júnior W, Leoni GB, Faloni APS, Marcaccini AM, Silva Sousa YTC, et al. Local delivery of strontium ranelate promotes regeneration of critical size bone defects filled with collagen sponge. J Biomed Mater Res A 2018;106:333-41.
  • Henriques Lourenço A, Neves N, Ribeiro-Machado C, Sousa SR, Lamghari M, Barrias CC, et al. Injectable hybrid system for strontium local delivery promotes bone regeneration in a rat critical-sized defect model. Sci Rep 2017;7:5098.
  • Rosa JAD, Sakane K K, Santos K C P, Corrêa V B, Arana-Chavez V E, Oliveira J X D. Strontium Ranelate Effect on the Repair of Bone Defects and Molecular Components of the Cortical Bone of Rats. Braz Dent J 2016;27:502–7.
  • Murali VP, Guerra FD, Ghadri N, Christian JM, Stein SH, Jennings JA, et al. Simvastatin loaded chitosan guided bone regeneration membranes stimulate bone healing. J Periodontal Res 2021;56:877-84.
  • Abdel Nasser Atia G, Shalaby HK, Zehravi M, Ghobashy MM, Ahmad Z, Khan FS, et al. Locally Applied Repositioned Hormones for Oral Bone and Periodontal Tissue Engineering: A Narrative Review. Polymers 2022;14:2964.
  • Dang M, Koh AJ, Jin X, McCauley LK, Ma PX. Local pulsatile PTH delivery regenerates bone defects via enhanced bone remodeling in a cell-free scaffold. Biomaterials 2017;114:1-9.
  • Huang J, Lin D, Wei Z, Li Q, Zheng J, Zheng Q, et al. Parathyroid hormone derivative with reduced osteoclastic activity promoted bone regeneration via synergistic bone remodeling and angiogenesis. Small 2020;16:e1905876.
  • Zou Z, Wang L, Zhou Z, Sun Q, Liu D, Chen Y, et al. Simultaneous incorporation of PTH (1–34) and nano-hydroxyapatite into Chitosan/Alginate Hydrogels for efficient bone regeneration. Bioact Mater 2021;6:1839-51.
  • Wojda SJ, Marozas IA, Anseth KS, Yaszemski MJ, Donahue SW. Impact of release kinetics on efficacy of locally delivered parathyroid hormone for bone regeneration applications. Tissue Eng Part A 2021;27:246-55.
  • Wang Y, Hao Z, Zhang Y, Hu Y, Chen T, Yan F, et al. Recombinant PTH modification: A new strategy for a multifunctional CaP material to enhance bone regeneration. Compos B Eng 2022;247:110289.
  • Göker F, Ersanlı S, Arısan V, Cevher E, Güzel EE, İşsever H, et al. Combined effect of parathyroid hormone and strontium ranelate on bone healing in ovariectomized rats. Oral Dis 2018;24:1255-69.
  • Wang Y, Wang J, Zheng J, Yu M, Cai L, Zhang S, et al. Ectopic osteogenesis by type I collagen loaded with a novel synthesized PTHrelated peptide-1 in vivo. J Biomed Mater Res A 2020;108:166-77.
  • Liedert A, Wagner L, Seefried L, Ebert R, Jakob F, Ignatius A. Estrogen receptor and Wnt signaling interact to regulate early gene expression in response to mechanical strain in osteoblastic cells. Biochem Biophys Res Commun 2010;394:755-9.
  • Chen X, Zhu X, Hu Y, Yuan W, Qiu X, Jiang T, et al. EDTAmodified 17β-estradiol-laden upconversion nanocomposite for bonetargeted hormone replacement therapy for osteoporosis. Theranostics. 2020;10:3281.
  • Cottart CH, Nivet-Antoine V, Laguillier-Morizot C, Beaudeux JL. Resveratrol bioavailability and toxicity in humans. Mol Nutr Food Res 2010;54:7-16.
  • Ososki AL, Kennelly EJ. Phytoestrogens: a review of the present state of research. Phytother Res 2003;17:845-69.
  • Murgia D, Mauceri R, Campisi G, De Caro V. Advance on resveratrol application in bone regeneration: progress and perspectives for use in oral and maxillofacial surgery. Biomolecules 2019;9:94.
  • Bhattarai G, Poudel SB, Kook S-H, Lee J-C. Resveratrol prevents alveolar bone loss in an experimental rat model of periodontitis. Acta Biomater 2016;29:398-408.
  • Li L, Yu M, Li Y, Li Q, Yang H, Zheng M, et al. Synergistic antiinflammatory and osteogenic n-HA/resveratrol/chitosan composite microspheres for osteoporotic bone regeneration. Bioact Mater 2021;6:1255-66.
  • Sri KH, Ganapathy D, Nallasamy D, Venugopalan S, Sivaswamy V, Kamath SM. Sustained release of resveratrol from fused deposition modelling guided 3D porous scaffold for bone tissue engineering. Process Biochem 2023;131:188-98.
  • Ahmadipour S, Varshosaz J, Hashemibeni B, Safaeian L, Manshaei M, Sarmadi A. Calcitonin-loaded octamaleimic acid–silsesquioxane nanoparticles in hydrogel scaffold support osteoinductivity in bone regeneration. Pharm Dev Technol 2021;26:220-32.
  • Xu J, Wang J, Chen X, Li Y, Mi J, Qin L. The effects of calcitonin gene-related peptide on bone homeostasis and regeneration. Curr Osteoporos Rep 2020;18:621-32.
  • Jia S, Zhang SJ, Wang XD, Yang ZH, Sun YN, Gupta A, et al. Calcitonin gene‑related peptide enhances osteogenic differentiation and recruitment of bone marrow mesenchymal stem cells in rats. Exp Ther Med 2019;18:1039-46.
Toplam 74 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Periodontoloji
Bölüm Derleme
Yazarlar

Işıl Karapınar 0000-0002-6774-6355

Altan Doğan 0000-0001-6199-6647

Yayımlanma Tarihi 3 Ocak 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 42 Sayı: 1

Kaynak Göster

APA Karapınar, I., & Doğan, A. (2025). Kemik yapımını artıran uygulamalar: derleme. Acta Odontologica Turcica, 42(1), 43-56.
AMA Karapınar I, Doğan A. Kemik yapımını artıran uygulamalar: derleme. Acta Odontol Turc. Ocak 2025;42(1):43-56.
Chicago Karapınar, Işıl, ve Altan Doğan. “Kemik yapımını artıran Uygulamalar: Derleme”. Acta Odontologica Turcica 42, sy. 1 (Ocak 2025): 43-56.
EndNote Karapınar I, Doğan A (01 Ocak 2025) Kemik yapımını artıran uygulamalar: derleme. Acta Odontologica Turcica 42 1 43–56.
IEEE I. Karapınar ve A. Doğan, “Kemik yapımını artıran uygulamalar: derleme”, Acta Odontol Turc, c. 42, sy. 1, ss. 43–56, 2025.
ISNAD Karapınar, Işıl - Doğan, Altan. “Kemik yapımını artıran Uygulamalar: Derleme”. Acta Odontologica Turcica 42/1 (Ocak 2025), 43-56.
JAMA Karapınar I, Doğan A. Kemik yapımını artıran uygulamalar: derleme. Acta Odontol Turc. 2025;42:43–56.
MLA Karapınar, Işıl ve Altan Doğan. “Kemik yapımını artıran Uygulamalar: Derleme”. Acta Odontologica Turcica, c. 42, sy. 1, 2025, ss. 43-56.
Vancouver Karapınar I, Doğan A. Kemik yapımını artıran uygulamalar: derleme. Acta Odontol Turc. 2025;42(1):43-56.