Araştırma Makalesi
BibTex RIS Kaynak Göster

Dental Dokuların Optik Özelliklerinin Simülasyonu ile Kompozit Rezinin Işık Cihazına Olan Uzaklığının ve Işık Uygulama Sürelerinin Kompozit Rezinin Mikrosertlik Değerleri Üzerine Etkisi

Yıl 2025, Cilt: 42 Sayı: 3, 122 - 130, 04.09.2025

Öz

Amaç: Bu çalışmanın amacı dental dokuların optik özelliklerinin simülasyonu ile kompozit rezinin ışık cihazına olan uzaklığının ve ışık uygulama sürelerinin kompozit rezinin yüzey mikrosertlik değerleri üzerine etkisini incelemektir.
Gereç ve Yöntem: 4 adet çekilmiş sağlam insan molar dişinin kron kısımları (2, 4, 6 ve 8 mm yükseklikte), ışık cihazı ucu ile kompozit rezin arasındaki uzaklığı taklit amacıyla kullanıldı. Test örnekleri siyah teflon kalıplar (2x4 mm) içerisine yerleştirildi. Üzerlerine çekilmiş diş modelleri konulan 4 grup (2, 4, 6 ve 8 mm) ve konulmayan 1 grup (0 mm); 20 sn (n=10) ve diğer 5 grup 40 sn (n=10) süre ile polimerize edildi. Örneklerin üst ve alt yüzeylerinden mikrosertlik ölçümleri gerçekleştirildi. Sonuçlar Kruskal Wallis, Mann Whitney ve Wilcoxon yüzey testleriyle analiz edildi.
Bulgular: Üst yüzey mikrosertlik değerleri, alt yüzeylere göre her mesafede daha yüksek gözlendi (p<0.05). 0 ve 2 mm mesafeden 20 sn ışık uygulanan örneklerin mikrosertlik değerleri hem üst hem de alt yüzeylerde 4, 6 ve 8 mm mesafeye göre istatistiksel olarak anlamlı şekilde daha yüksek bulundu (p<0.05). 40 sn ışık uygulandığında ise 0, 2 ve 4 mm mesafede üst ve alt yüzey mikrosertlik değerleri, 6 ve 8 mm’ye göre istatistiksel olarak anlamlı şekilde daha yüksek değerler gösterdi (p<0.05).
Sonuç: Test edilen kompozit rezin en yüksek mikrosertlik değerlerine, ışık cihazı ucunun materyale en yakın olduğu mesafe ve 40 sn süre ile ışık uygulaması ile polimerize edilen gruplarda ulaştı.

Etik Beyan

Çalışma için Gazi Üniversitesi Diş Hekimliği Fakültesi Klinik Araştırmalar Etik Kurulu’ndan 27.08.2020 tarih ve E.19953 evrak sayılı etik kurul onayı alındı.

Destekleyen Kurum

Bu araştırma “'TDH-2021-6940” kodlu proje ile Gazi Üniversitesi Bilimsel Araştırma Projeleri Komisyonu tarafından desteklenmiştir.

Proje Numarası

TDH-2021-6940

Teşekkür

Çalışma 2022 yılında Yükseköğretim Kurulu Başkanlığı “ Ulusal Tez Merkezi” isimli sitede 10450453 referans numarası ile yayınlanmıştır.

Kaynakça

  • 1. Cho K, Rajan G, Farrar P, Prentice L, Prusty BG. Dental Resin Composites: A review on materials to product realizations. Compos. Part B Eng. 2022, 230, 109495.
  • 2. Jakupovi´c S, Pervan N, Meši´c E, Gavranovi´c-Glamoˇc A, Bajsman A, Muratovi´c E, Kazazi´c L, Kantardži´c-Kovaˇcevi´c A. Assessment of microhardness of conventional and bulk-fill resin composites using different light-curing intensity. Polymers 2023, 15, 2250.
  • 3. Pelissier B, Jacquot B, Palin WM, Shortall AC. Three generations of LED lights and clinical implications for optimizing their use. 1: from past to present. Dent Update 2011;38:660-670.
  • 4. Al-Zaini AO, Platt JA. Effect of light-curing distance and curing time on composite microflexural strength. Dent Mater J 2021; 40: 202–208.
  • 5. Rode KM, Kawano Y, Turbino ML. Evaluation of curing light distance on resin composite microhardness and polymerization. Oper Dent 2007;32:571-578.
  • 6. Georgiev G, Dikova T. Hardness investigation of conventional, bulk fill and flowable dental composites. J Achiev Mater Manuf Eng 2021; 109: 68–77.
  • 7. Garoushi S, Säilynoja E, Vallittu PK, Lassila L. Physical properties and depth of cure of a new short fiber reinforced composite. Dent Mater J 2013;29:835-841.
  • 8. Yang DL, Sun Q, Niu H, Wang RL, Wang D, Wang JX. The properties of dental resin composites reinforced with silica colloidal nanoparticle clusters: effects of heat treatment and filler composition. Compos Part B Eng. 2020; 186: 107791.
  • 9. Ferracane JL. Resin composite—state of the art. Dent Mater J 2011;27:29-38.
  • 10. Keleş ZH, Tarım B. Effect of preheating on microhardness, degree of conversion, and depth of cure of various bulk-fill composites. Selcuk Dent J 2024;11(1): 27-32.
  • 11. Chang HS, Kim JW. Early hardness and shear bond strength of dual-cure resin cement light cured through resin overlays with different dentin-layer thicknesses. Oper Dent 2014; 39:398-406.
  • 12. Price RB, Derand T, Sedarous M, Andreou P, Loney RW. Effect of distance on the power density from two light guides. J Esthet Restor Dent 2000;12:320-327.
  • 13. Araújo1 FS, Takeshita WM, Amaral RC, Mendonça AAM. Assessment of bulk-fill of resins microhardness longitudinal. Braz J Oral Sci. 2024;23:e240398.
  • 14. Bala O, Ölmez A, Kalayci Ş. Effect of LED and halogen light curing on polymerization of resin‐based composites. J Oral Rehabil 2005;32:134-140.
  • 15. Deniz Arısu H, Eligüzeloglu Dalkilic E, Alkan F, Erol S, Uctasli MB, Cebi A. Use of artificial neural network in determination of shade, light curing unit, and composite parameters’ effect on bottom/top Vickers hardness ratio of composites. Biomed Res Int 2018, Nov12; 2018:4856707.
  • 16. Kaminedi RR, Penumatsa NV, Priya T. The influence of finishing/polishing time and cooling system on surface roughness and microhardness of two different types of composite resin restorations. J Int Soc Prev Community Dent 2014;4.Suppl 2:S99-S104.
  • 17. Pilo R, Cardash HS. Post-irradiation polymerization of different anterior and posterior visible light-activated resin composites. Dent Mater 1992;8:299-304.
  • 18. Catelan A, de Araújo LSN, da Silveira BCM, Kawano Y, Ambrosano GMB, Marchi GM. Impact of the distance of light curing on the degree of conversion and microhardness of a composite resin. Acta Odontol Scand 2015;73:298-301.
  • 19. Strassler HE, Price RB. Understanding light curing, Part I. Delivering predictable and successful restorations. Dent Today 2014;33:114-116.
  • 20. Altaie A, Hadis MA, Wilson V, German MJ, Nattress BR, Wood D, Palin WM. An evaluation of the efficacy of LED light curing units in primary and secondary dental settings in the United Kingdom. Oper Dent 2021; 46: 271-282.
  • 21. Ernst CP, Price RB, Callaway A, Masek A, Schwarm H, Rullmann I . Visible Light Curing Devices-Irradiance and Use in 302 German Dental Offices. J Adhes Dent 2018;20.
  • 22. Shimokawa CAK, Harlow JE, Turbino ML, Price RB. Ability of four dental radiometers to measure the light output from nine curing lights. J Dent 2016;54:48-55.
  • 23. Marovic D, Panduric V, Tarle Z, Ristic M, Sariri K, Demoli N, Klaric E, Jankovic B, Prskalo K. Degree of conversion and microhardness of dental composite resin materials. J Mol Struct 2013; 1044: 299–302.
  • 24. Shortall AC, Price RB, MacKenzie L, Burke FJ. Guidelines for the selection, use, and maintenance of LED light-curing units - Part 1. Br Dent J 2016; 221: 453-460.
  • 25. Xu X, Sandras DA, Burgess JO. Shear bond strength with increasing light‐guide distance from dentin. J Esthet Restor Dent 2006;18:19-28.
  • 26. Poggio C, Lombardini M, Gaviati S, Chiesa M. Evaluation of Vickers hardness and depth of cure of six composite resins photo-activated with different polymerization modes. J Conserv Dent 2012;15:237-241.
  • 27. Barakah H. Effect of different curing times and distances on the microhardness of nanofilled resin-based composite restoration polymerized with high-intensity LED light curing units. Saudi Dent J 2021;33:1035-1041.
  • 28. Aguiar FH, Braceiro A, Lima DA, Ambrosano GM, Lovadino JR. Effect of light curing modes and light curing time on the microhardness of a hybrid composite resin. J Contemp Dent Pract 2007;8:1-8.
  • 29. Tanthanuch S, Kukiattrakoon B. The effect of curing time by conventional quartz tungsten halogens and new light-emitting diodes light curing units on degree of conversion and microhardness of a nanohybrid resin composite. J Conserv Dent 2019;22:196-200.
  • 30. Segal P, Lugassy D, Mijiritsky E, Dekel M, Ben-Amar A, Ormianer Z, et al. The effect of the light intensity and light distances of led and qth curing devices on the hardness of two light-cured nano-resin composites. J Mater Sci 2015;6:1071.
  • 31. Aguiar FH, Lazzari CR, Lima DANL, Ambrosano GMB, Lovadino JR. Effect of light curing tip distance and resin shade on microhardness of a hybrid resin composite. Braz Oral Res 2005;19:302-306.
  • 32. Sharkey S, Ray N, Burke F, Ziada H, Hannigan A. Surface hardness of light-activated resin composites cured by two different visible-light sources: an in vitro study. Quintessence Int 2001;32 (5):401-5..
  • 33. Knezevic A, Zeljezic D, Kopjar N, Tarle Z. Cytotoxicity of composite materials polymerized with LED curing units. Oper Dent 2008; 33:23-30.
  • 34. Santini A, Watterson C, Miletic V. Temperature rise within the pulp chamber during composite resin polymerisation using three different light sources. Open Dent J 2008; 2:137.

Influence of Light Curing Tip Distance and Curing Time on Microhardness of a Composite Resin By Simulation of the Optical Properties of Dental Tissues

Yıl 2025, Cilt: 42 Sayı: 3, 122 - 130, 04.09.2025

Öz

Objective: The aim of this study was to simulate the optical properties of dental tissues and to examine the influence of the distance of the composite resin from the light curing unit and the curing times on the surface microhardness of the composite resin.
Materials and Method: Crown parts of the 4 extracted intact human molar teeth (2, 4, 6 and 8 mm in height) were used to simulate the distance between the light curing unit tip and the composite resin. Test samples were placed in black teflon molds (2x4 mm). Extracted tooth models were placed on 4 groups (2, 4, 6 and 8 mm) and without extracted tooth models 1 group (0 mm) was polymerized for 20 seconds (n=10) and the other 5 groups were polymerized for 40 seconds (n=10). Microhardness measurements were performed from the top and bottom surfaces of each sample. The results were analyzed with Kruskal Wallis, Mann Whitney and Wilcoxon surface tests.
Results: Top surface microhardness values were higher at all distances than the bottom surfaces (p<0.05). The surface microhardness of the samples cured 20 seconds from 0 and 2 mm distance was significantly higher on both the top and bottom surfaces compared to the distance of 4, 6 and 8 mm (p<0.05). When the curing time was 40 seconds, the top and bottom surface microhardness at 0, 2 and 4 mm distances showed statistically higher microhardness values than 6 and 8 mm (p<0.05).
Conclusion: The tested composite resin materials revealed the highest microhardness values in the groups light cured for 40 seconds where the light curing unit tip was closest to the material.

Proje Numarası

TDH-2021-6940

Kaynakça

  • 1. Cho K, Rajan G, Farrar P, Prentice L, Prusty BG. Dental Resin Composites: A review on materials to product realizations. Compos. Part B Eng. 2022, 230, 109495.
  • 2. Jakupovi´c S, Pervan N, Meši´c E, Gavranovi´c-Glamoˇc A, Bajsman A, Muratovi´c E, Kazazi´c L, Kantardži´c-Kovaˇcevi´c A. Assessment of microhardness of conventional and bulk-fill resin composites using different light-curing intensity. Polymers 2023, 15, 2250.
  • 3. Pelissier B, Jacquot B, Palin WM, Shortall AC. Three generations of LED lights and clinical implications for optimizing their use. 1: from past to present. Dent Update 2011;38:660-670.
  • 4. Al-Zaini AO, Platt JA. Effect of light-curing distance and curing time on composite microflexural strength. Dent Mater J 2021; 40: 202–208.
  • 5. Rode KM, Kawano Y, Turbino ML. Evaluation of curing light distance on resin composite microhardness and polymerization. Oper Dent 2007;32:571-578.
  • 6. Georgiev G, Dikova T. Hardness investigation of conventional, bulk fill and flowable dental composites. J Achiev Mater Manuf Eng 2021; 109: 68–77.
  • 7. Garoushi S, Säilynoja E, Vallittu PK, Lassila L. Physical properties and depth of cure of a new short fiber reinforced composite. Dent Mater J 2013;29:835-841.
  • 8. Yang DL, Sun Q, Niu H, Wang RL, Wang D, Wang JX. The properties of dental resin composites reinforced with silica colloidal nanoparticle clusters: effects of heat treatment and filler composition. Compos Part B Eng. 2020; 186: 107791.
  • 9. Ferracane JL. Resin composite—state of the art. Dent Mater J 2011;27:29-38.
  • 10. Keleş ZH, Tarım B. Effect of preheating on microhardness, degree of conversion, and depth of cure of various bulk-fill composites. Selcuk Dent J 2024;11(1): 27-32.
  • 11. Chang HS, Kim JW. Early hardness and shear bond strength of dual-cure resin cement light cured through resin overlays with different dentin-layer thicknesses. Oper Dent 2014; 39:398-406.
  • 12. Price RB, Derand T, Sedarous M, Andreou P, Loney RW. Effect of distance on the power density from two light guides. J Esthet Restor Dent 2000;12:320-327.
  • 13. Araújo1 FS, Takeshita WM, Amaral RC, Mendonça AAM. Assessment of bulk-fill of resins microhardness longitudinal. Braz J Oral Sci. 2024;23:e240398.
  • 14. Bala O, Ölmez A, Kalayci Ş. Effect of LED and halogen light curing on polymerization of resin‐based composites. J Oral Rehabil 2005;32:134-140.
  • 15. Deniz Arısu H, Eligüzeloglu Dalkilic E, Alkan F, Erol S, Uctasli MB, Cebi A. Use of artificial neural network in determination of shade, light curing unit, and composite parameters’ effect on bottom/top Vickers hardness ratio of composites. Biomed Res Int 2018, Nov12; 2018:4856707.
  • 16. Kaminedi RR, Penumatsa NV, Priya T. The influence of finishing/polishing time and cooling system on surface roughness and microhardness of two different types of composite resin restorations. J Int Soc Prev Community Dent 2014;4.Suppl 2:S99-S104.
  • 17. Pilo R, Cardash HS. Post-irradiation polymerization of different anterior and posterior visible light-activated resin composites. Dent Mater 1992;8:299-304.
  • 18. Catelan A, de Araújo LSN, da Silveira BCM, Kawano Y, Ambrosano GMB, Marchi GM. Impact of the distance of light curing on the degree of conversion and microhardness of a composite resin. Acta Odontol Scand 2015;73:298-301.
  • 19. Strassler HE, Price RB. Understanding light curing, Part I. Delivering predictable and successful restorations. Dent Today 2014;33:114-116.
  • 20. Altaie A, Hadis MA, Wilson V, German MJ, Nattress BR, Wood D, Palin WM. An evaluation of the efficacy of LED light curing units in primary and secondary dental settings in the United Kingdom. Oper Dent 2021; 46: 271-282.
  • 21. Ernst CP, Price RB, Callaway A, Masek A, Schwarm H, Rullmann I . Visible Light Curing Devices-Irradiance and Use in 302 German Dental Offices. J Adhes Dent 2018;20.
  • 22. Shimokawa CAK, Harlow JE, Turbino ML, Price RB. Ability of four dental radiometers to measure the light output from nine curing lights. J Dent 2016;54:48-55.
  • 23. Marovic D, Panduric V, Tarle Z, Ristic M, Sariri K, Demoli N, Klaric E, Jankovic B, Prskalo K. Degree of conversion and microhardness of dental composite resin materials. J Mol Struct 2013; 1044: 299–302.
  • 24. Shortall AC, Price RB, MacKenzie L, Burke FJ. Guidelines for the selection, use, and maintenance of LED light-curing units - Part 1. Br Dent J 2016; 221: 453-460.
  • 25. Xu X, Sandras DA, Burgess JO. Shear bond strength with increasing light‐guide distance from dentin. J Esthet Restor Dent 2006;18:19-28.
  • 26. Poggio C, Lombardini M, Gaviati S, Chiesa M. Evaluation of Vickers hardness and depth of cure of six composite resins photo-activated with different polymerization modes. J Conserv Dent 2012;15:237-241.
  • 27. Barakah H. Effect of different curing times and distances on the microhardness of nanofilled resin-based composite restoration polymerized with high-intensity LED light curing units. Saudi Dent J 2021;33:1035-1041.
  • 28. Aguiar FH, Braceiro A, Lima DA, Ambrosano GM, Lovadino JR. Effect of light curing modes and light curing time on the microhardness of a hybrid composite resin. J Contemp Dent Pract 2007;8:1-8.
  • 29. Tanthanuch S, Kukiattrakoon B. The effect of curing time by conventional quartz tungsten halogens and new light-emitting diodes light curing units on degree of conversion and microhardness of a nanohybrid resin composite. J Conserv Dent 2019;22:196-200.
  • 30. Segal P, Lugassy D, Mijiritsky E, Dekel M, Ben-Amar A, Ormianer Z, et al. The effect of the light intensity and light distances of led and qth curing devices on the hardness of two light-cured nano-resin composites. J Mater Sci 2015;6:1071.
  • 31. Aguiar FH, Lazzari CR, Lima DANL, Ambrosano GMB, Lovadino JR. Effect of light curing tip distance and resin shade on microhardness of a hybrid resin composite. Braz Oral Res 2005;19:302-306.
  • 32. Sharkey S, Ray N, Burke F, Ziada H, Hannigan A. Surface hardness of light-activated resin composites cured by two different visible-light sources: an in vitro study. Quintessence Int 2001;32 (5):401-5..
  • 33. Knezevic A, Zeljezic D, Kopjar N, Tarle Z. Cytotoxicity of composite materials polymerized with LED curing units. Oper Dent 2008; 33:23-30.
  • 34. Santini A, Watterson C, Miletic V. Temperature rise within the pulp chamber during composite resin polymerisation using three different light sources. Open Dent J 2008; 2:137.
Toplam 34 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Restoratif Diş Tedavisi
Bölüm Özgün Araştırma Makalesi
Yazarlar

Esin Çöltekin Olgun

Mine Betül Üçtaşlı

Proje Numarası TDH-2021-6940
Yayımlanma Tarihi 4 Eylül 2025
Gönderilme Tarihi 1 Mayıs 2024
Kabul Tarihi 1 Ekim 2024
Yayımlandığı Sayı Yıl 2025 Cilt: 42 Sayı: 3

Kaynak Göster

APA Çöltekin Olgun, E., & Üçtaşlı, M. B. (2025). Dental Dokuların Optik Özelliklerinin Simülasyonu ile Kompozit Rezinin Işık Cihazına Olan Uzaklığının ve Işık Uygulama Sürelerinin Kompozit Rezinin Mikrosertlik Değerleri Üzerine Etkisi. Acta Odontologica Turcica, 42(3), 122-130.
AMA Çöltekin Olgun E, Üçtaşlı MB. Dental Dokuların Optik Özelliklerinin Simülasyonu ile Kompozit Rezinin Işık Cihazına Olan Uzaklığının ve Işık Uygulama Sürelerinin Kompozit Rezinin Mikrosertlik Değerleri Üzerine Etkisi. Acta Odontol Turc. Eylül 2025;42(3):122-130.
Chicago Çöltekin Olgun, Esin, ve Mine Betül Üçtaşlı. “Dental Dokuların Optik Özelliklerinin Simülasyonu ile Kompozit Rezinin Işık Cihazına Olan Uzaklığının ve Işık Uygulama Sürelerinin Kompozit Rezinin Mikrosertlik Değerleri Üzerine Etkisi”. Acta Odontologica Turcica 42, sy. 3 (Eylül 2025): 122-30.
EndNote Çöltekin Olgun E, Üçtaşlı MB (01 Eylül 2025) Dental Dokuların Optik Özelliklerinin Simülasyonu ile Kompozit Rezinin Işık Cihazına Olan Uzaklığının ve Işık Uygulama Sürelerinin Kompozit Rezinin Mikrosertlik Değerleri Üzerine Etkisi. Acta Odontologica Turcica 42 3 122–130.
IEEE E. Çöltekin Olgun ve M. B. Üçtaşlı, “Dental Dokuların Optik Özelliklerinin Simülasyonu ile Kompozit Rezinin Işık Cihazına Olan Uzaklığının ve Işık Uygulama Sürelerinin Kompozit Rezinin Mikrosertlik Değerleri Üzerine Etkisi”, Acta Odontol Turc, c. 42, sy. 3, ss. 122–130, 2025.
ISNAD Çöltekin Olgun, Esin - Üçtaşlı, Mine Betül. “Dental Dokuların Optik Özelliklerinin Simülasyonu ile Kompozit Rezinin Işık Cihazına Olan Uzaklığının ve Işık Uygulama Sürelerinin Kompozit Rezinin Mikrosertlik Değerleri Üzerine Etkisi”. Acta Odontologica Turcica 42/3 (Eylül2025), 122-130.
JAMA Çöltekin Olgun E, Üçtaşlı MB. Dental Dokuların Optik Özelliklerinin Simülasyonu ile Kompozit Rezinin Işık Cihazına Olan Uzaklığının ve Işık Uygulama Sürelerinin Kompozit Rezinin Mikrosertlik Değerleri Üzerine Etkisi. Acta Odontol Turc. 2025;42:122–130.
MLA Çöltekin Olgun, Esin ve Mine Betül Üçtaşlı. “Dental Dokuların Optik Özelliklerinin Simülasyonu ile Kompozit Rezinin Işık Cihazına Olan Uzaklığının ve Işık Uygulama Sürelerinin Kompozit Rezinin Mikrosertlik Değerleri Üzerine Etkisi”. Acta Odontologica Turcica, c. 42, sy. 3, 2025, ss. 122-30.
Vancouver Çöltekin Olgun E, Üçtaşlı MB. Dental Dokuların Optik Özelliklerinin Simülasyonu ile Kompozit Rezinin Işık Cihazına Olan Uzaklığının ve Işık Uygulama Sürelerinin Kompozit Rezinin Mikrosertlik Değerleri Üzerine Etkisi. Acta Odontol Turc. 2025;42(3):122-30.