Video Görüntülerinde Gerçek Zamanlı Yüz Tanıma ve Zaman İşaretleme için Yeni Bir Derin Öğrenme Modeli
Yıl 2022,
Cilt: 15 Sayı: 2, 167 - 175, 30.04.2022
Hüseyin Göze
,
Oktay Yıldız
Öz
Video görüntülerinde gerçek zamanlı yüz tanıma ve görüntü akışı içerisinde etiketlenmesi birçok alanda yüksek öneme sahip bir konudur. Son yıllarda, video görüntülerinde gerçek zamanlı yüz tanıma problemlerinde derin sinir ağları başarılı bir şekilde kullanılmaktadır. Ancak video görüntülerinde yer alan küçük ölçekli yüzlerin tespiti ve aynı zamanda model yanıt süresinin düşürülmesi karşılaşılan önemli zorluklardır. Gerçekleştirilen bu çalışmada, video görüntülerinde gerçek zamanlı yüz tanıma ve zamanın tespiti için yeni bir derin öğrenme modeli önerilmiştir. Yapılan deneysel çalışmalarda önerilen Evrişimli Sinir Ağı tabanlı modelin MTCNN, OPENCV-CNN, HOG+SVM, SSD-CAFFEMODEL modellerine göre daha yüksek performansa ve daha yüksek doğruluk oranına sahip olduğu gösterilmiştir.
Teşekkür
Gerçekleştirdiğimiz çalışmanın her aşamasında ilgi ve desteğini esirgemeyen, bilgi, öneri ve tecrübesiyle yol gösteren ve çalışmamı bilimsel temeller ışığında şekillendiren sayın hocam Doç. Dr. Oktay YILDIZ’a sonsuz teşekkürlerimi sunarım.
Kaynakça
- H.S. Dadi & G. M. Pillutla, “Improved face recognition rate using HOG features and SVM classifier”, IOSR Journal of Electronics and Communication Engineering, 11(4), 34-44,2018.
- O. Yıldız, “Derin öğrenme yöntemleriyle dermoskopi görüntülerinden melanom tespiti: Kapsamlı bir çalışma”, Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 34(4), 2241-2260, 2019.
- K. Zhang, Z. Zhang, Z. Li, & Y. Qiao, “Joint face detection and alignment using multitask cascaded convolutional networks”, IEEE Signal Processing Letters, 23(10), 1499-1503, 2016.
- W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C. Y. Fu, & A. C. Berg, “Ssd: Single shot multibox detector”, European conference on computer vision, 21-37, 2016.
- WS. McCulloch and W. Pitts., “A logical calculus of the ideas immanent in nervous activity”, The bulletin of mathematical biophysics, 5(4), 115–133, 1943.
- S. Hochreiter and J. Schmidhuber, “Long short-term memory”, Neural computation, 9(8), 735–1780, 1997.
- S. Lohr , “The age of big data”, New York Times, 11(2012), 2012.
- P. Viola and M. Jones , “Rapid object detection using a boosted cascade of simple features”, in Computer Vision and Pattern Recognition. Proceedings of the 2001 IEEE Computer Society Conference (CVPR) on, vol. 1, 511–518, 2001.
- E. Özbaysar and E. Borandağ , “Vehicle plate tracking system”, in 2018 26th Signal Processing and Communications Applications Conference (SIU), IEEE, 1–4, 2018.
- X. Luo, R. Shen, J. Hu, J. Deng, L. Hu & Q. Guan, “A deep convolution neural network model for vehicle recognition and face recognition”, Procedia Computer Science, 107, 715-720, 2017.
- K. B. Pranav, & J. Manikandan, “Design and Evaluation of a Real-Time Face Recognition System using Convolutional Neural Networks”, Procedia Computer Science, 171, 1651-1659, 2020.
- Z. Mahmood, N. Muhammad, N. Bibi, & T. Ali, “A review on state-of-the-art face recognition approaches”, Fractals, 25(02), 2017.
- G. B. Huang, M. Ramesh, T. Berg, and E. Learned-Miller, “Labeled faces in the wild: A database for studying face recognition in unconstrained environments”, Technical Report, 07-49, 2007.
- S. Sharma, K. Shanmugasundaram, & S. K. Ramasamy, “FAREC—CNN based efficient face recognition technique using Dlib”, In International Conference on Advanced Communication Control and Computing Technologies (ICACCCT), 192-195, IEEE, 2016.
- F. Schroff, D. Kalenichenko, & J. Philbin, “Facenet: A unified embedding for face recognition and clustering”, In Proceedings of the IEEE conference on computer vision and pattern recognition, 815-823, 2015.
- K. He, X. Zhang, S. Ren, & J. Sun, “Deep residual learning for image recognition”, in Proceedings of the IEEE conference on computer vision and pattern recognition, 770-778, 2016.
- H. Jiang, & E. Learned-Miller, “Face detection with the faster R-CNN”, 12th IEEE international conference on automatic face & gesture recognition, 650-657, IEEE, 2017.
- I. Kalinovskii, & V. Spitsyn, “Compact convolutional neural network cascade for face detection”, In Proceedings of the 10th Annual International Scientific Conference on Parallel Computing Technologies (PCT), 1576,375–387, 2016.
- K. M. Sagayam, “CNN-based Mask Detection System Using OpenCV and MobileNetV2”, In 2021 3rd International Conference on Signal Prosessin and Communication (ICPSC), 115-119, 2021.
A New Deep Learning Model for Real-Time Face Recognition and Time Marking in Video Footage
Yıl 2022,
Cilt: 15 Sayı: 2, 167 - 175, 30.04.2022
Hüseyin Göze
,
Oktay Yıldız
Öz
Real-time face recognation and tagging in the video stream are high importance in many areas. In recent years, deep neural networks have been successfully used in real-time facial recognition problems in video images. However, detection of small-scale faces in video images and at the same time reducing response time of model are significant challenges. In this study, new deep learning model is suggested for real-time face recognition and time detection in video images. In experimental studies, the proposed CNN-based model has been shown to have higher performance and more accuracy rate than MTCNN, OPENCV-CNN, HOG+SVM, SSD-CAFFEMODEL models.
Kaynakça
- H.S. Dadi & G. M. Pillutla, “Improved face recognition rate using HOG features and SVM classifier”, IOSR Journal of Electronics and Communication Engineering, 11(4), 34-44,2018.
- O. Yıldız, “Derin öğrenme yöntemleriyle dermoskopi görüntülerinden melanom tespiti: Kapsamlı bir çalışma”, Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 34(4), 2241-2260, 2019.
- K. Zhang, Z. Zhang, Z. Li, & Y. Qiao, “Joint face detection and alignment using multitask cascaded convolutional networks”, IEEE Signal Processing Letters, 23(10), 1499-1503, 2016.
- W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C. Y. Fu, & A. C. Berg, “Ssd: Single shot multibox detector”, European conference on computer vision, 21-37, 2016.
- WS. McCulloch and W. Pitts., “A logical calculus of the ideas immanent in nervous activity”, The bulletin of mathematical biophysics, 5(4), 115–133, 1943.
- S. Hochreiter and J. Schmidhuber, “Long short-term memory”, Neural computation, 9(8), 735–1780, 1997.
- S. Lohr , “The age of big data”, New York Times, 11(2012), 2012.
- P. Viola and M. Jones , “Rapid object detection using a boosted cascade of simple features”, in Computer Vision and Pattern Recognition. Proceedings of the 2001 IEEE Computer Society Conference (CVPR) on, vol. 1, 511–518, 2001.
- E. Özbaysar and E. Borandağ , “Vehicle plate tracking system”, in 2018 26th Signal Processing and Communications Applications Conference (SIU), IEEE, 1–4, 2018.
- X. Luo, R. Shen, J. Hu, J. Deng, L. Hu & Q. Guan, “A deep convolution neural network model for vehicle recognition and face recognition”, Procedia Computer Science, 107, 715-720, 2017.
- K. B. Pranav, & J. Manikandan, “Design and Evaluation of a Real-Time Face Recognition System using Convolutional Neural Networks”, Procedia Computer Science, 171, 1651-1659, 2020.
- Z. Mahmood, N. Muhammad, N. Bibi, & T. Ali, “A review on state-of-the-art face recognition approaches”, Fractals, 25(02), 2017.
- G. B. Huang, M. Ramesh, T. Berg, and E. Learned-Miller, “Labeled faces in the wild: A database for studying face recognition in unconstrained environments”, Technical Report, 07-49, 2007.
- S. Sharma, K. Shanmugasundaram, & S. K. Ramasamy, “FAREC—CNN based efficient face recognition technique using Dlib”, In International Conference on Advanced Communication Control and Computing Technologies (ICACCCT), 192-195, IEEE, 2016.
- F. Schroff, D. Kalenichenko, & J. Philbin, “Facenet: A unified embedding for face recognition and clustering”, In Proceedings of the IEEE conference on computer vision and pattern recognition, 815-823, 2015.
- K. He, X. Zhang, S. Ren, & J. Sun, “Deep residual learning for image recognition”, in Proceedings of the IEEE conference on computer vision and pattern recognition, 770-778, 2016.
- H. Jiang, & E. Learned-Miller, “Face detection with the faster R-CNN”, 12th IEEE international conference on automatic face & gesture recognition, 650-657, IEEE, 2017.
- I. Kalinovskii, & V. Spitsyn, “Compact convolutional neural network cascade for face detection”, In Proceedings of the 10th Annual International Scientific Conference on Parallel Computing Technologies (PCT), 1576,375–387, 2016.
- K. M. Sagayam, “CNN-based Mask Detection System Using OpenCV and MobileNetV2”, In 2021 3rd International Conference on Signal Prosessin and Communication (ICPSC), 115-119, 2021.