Araştırma Makalesi
BibTex RIS Kaynak Göster

Üretken Yapay Zekaya Dayalı Bireysel Emeklilik Bilgilendirme ve Öneri Sistemi

Yıl 2024, Cilt: 17 Sayı: 3, 207 - 222, 31.07.2024
https://doi.org/10.17671/gazibtd.1475239

Öz

Bu makale, üretken yapay zeka (GenAI) ile güçlendirilmiş yenilikçi bir bireysel emeklilik bilgi ve tavsiye sisteminin tasarımını sunmaktadır. Sistem, kullanıcı verilerini analiz etmek ve kişiselleştirilmiş emeklilik planlama tavsiyeleri üretmek için gelişmiş AI algoritmalarını kullanacak şekilde özelleştirilmiştir. GenAI entegrasyonu ile sistem, kullanıcılar arasında finansal okuryazarlığı önemli ölçüde artırmayı, emeklilik planlaması ve finansal ürünler hakkında daha derin bir anlayış sağlamayı hedeflemektedir. GenAI destekli içgörüler, kullanıcıların uzun vadeli emeklilik hedefleri ve risk tercihleriyle uyumlu bilinçli kararlar alabilmelerini sağlayacak şekilde özelleştirilmiş yatırım stratejilerini kolaylaştıracaktır. Bu yaklaşım, sadece bireysel finansal sonuçları iyileştirmeyi amaçlamakla kalmayıp, geleneksel olarak yalnızca finansal danışmanlar aracılığıyla erişilebilen finansal tavsiyeye erişimi demokratikleştirmeyi de hedeflemektedir. Sistem geliştikçe, değişen ekonomik koşullara ve kişisel durumlara uyum sağlaması, kullanıcıların yaşam değişiklikleriyle uyumlu dinamik tavsiyeler sunması beklenmektedir. Bu sistemin amacı, emekliliğe yaklaşırken ve emekliliğe girerken kullanıcılarının finansal refahını ve güvenliğini artıracak şekilde proaktif bir emeklilik planlaması yaklaşımını teşvik etmektir.

Destekleyen Kurum

This study was supported with the project number 3235018 under the program of "TÜBİTAK 1707".

Kaynakça

  • Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., Polosukhin, I. (2017). Attention is all you need. Advances in neural information processing systems, 30.
  • Shaw, P., Uszkoreit, J., Vaswani, A.(2018). Self-attention with relative position representations. arXiv preprint arXiv:1803.02155.
  • Ghojogh B., Ghodsi, A. (2020). Attention mechanism, transformers, bert, and gpt: tutorial and survey
  • Devlin, J., Chang, M.-W., Lee, K., Toutanova, K. (2018). Bert: Pre-training of deep bidirectional transformers for language understanding. ArXiv preprint arXiv:1810.04805.
  • Liu, Q., Kusner, M. J., Blunsom, P. (2020). A survey on contextual Embeddings. arXiv preprint arXiv:2003.07278.
  • Roumeliotis, K. I., Tselikas, N. D., Nasiopoulos, D. K. (2023). Llama 2: Early adopters’ utilization of meta’s new open-source pretrained model.
  • Baladn, A., Sastre, I., Chiruzzo, L., Ros, A. (2023). Retuyt-inco at bea 2023 shared task: Tuning open-source llms for generating teacher responses. In: Proceedings of the 18th Workshop on Innovative Use of NLP for Building Educational Applications (BEA 2023), 756–765.
  • Nay, J. J. (2023). Large language models as fiduciaries: A case study toward robustly communicating with artificial intelligence through legal standards.
  • Sennrich, R., Haddow, B., Birch, A. (2015). Neural machine translation of rare words with subword units. arXiv preprint arXiv:1508.07909.
  • Zhuo, T. Y., Li, Z., Huang, Y., Li, Y.-F., Wang, W., Haffari, G., Shiri, F. (2023). On robustness of prompt-based semantic parsing with large pretrained language model: An empirical study on codex. arXiv preprint arXiv:2301.12868.
  • Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P. (2023). Vicuna: An open-source chatbot impressing gpt-4 with 90%* chatgpt quality. March.
  • Yao, Z., Yazdani Aminabadi, R., Zhang, M., Wu, X., Li, C., He, Y. (2022). Zeroquant: Efficient and affordable post-training quantization for large-scale transformers. Advances in Neural Information Processing Systems, 35, 27168–27183.
  • Zou, A., Wang, Z., Kolter, J. Z., Fredrikson, M. (2023). Universal and transferable adversarial attacks on aligned language models,” arXiv preprint arXiv:2307.15043.
  • Katz, D. M., Bommarito, M. J., Gao, S., Arredondo, P. (2023). GPT-4 Passes the Bar Exam. March.
  • Jung, D., Dorner, V., Glaser, F. and Morana, S. (2018a). Robo-advisory: digitalization and automation of financial advisory. Business and Information Systems Engineering, 60(1),81-86. https://doi.org/10.1007/s12599-018-0521-9.
  • Jung, D., Dorner, V., Weinhardt, C. and Pusmaz, H. (2018b).Designing a robo-advisor for risk-averse, low-budget consumers. Electronic Markets, 28(3), 367-380. https://doi.org/10.1007/s12525-017-0279-9.
  • D’Acunto, F., Prabhala, N. and Rossi, A.G. (2019). The promises and pitfalls of robo-advising. The Review of Financial Studies, 32(5), 1983-2020. https://doi.org/10.1093/rfs/hhz014.
  • Isaia, E. and Oggero, N. (2022). The potential use of RAs among the young generation: evidence from Italy. Finance Research Letters, 48, 103046. https://doi.org/10.1016/j.frl.2022.103046.
  • Au, C.D., Klingenberger, L., Svoboda, M. and Frere, E. (2021). Business model of sustainable robo-advisors: empirical insights for practical implementation. Sustainability,13(23),13009. https://doi.org/10.3390/su132313009.
  • Oh, S., Park, M.J., Kim, T.Y. and Shin, J. (2022). Marketing strategies for fintech companies: text data analysis of social media posts. Management Decision, 61(1), 243-268. https://doi.org/10.1108/md-09-2021-1183.
  • Rodrigues, L.F., Oliveira, A. and Rodrigues, H. (2023). Technology management has a significant impact on digital transformation in the banking sector. International Review of Economics and Finance, 88, 1375-1388. https://doi.org/10.1016/j.iref.2023.07.040.
  • McAfee, A., Brynjolfsson, E., Davenport, T.H., Patil, D.J. and Barton, D. (2012). Big data: the management revolution. Harvard Business Review, 90(10), 60-68.
  • Huang, E.Y. and Lin, C.Y. (2005). Customer-oriented financial service personalization”, Industrial Management and Data Systems, 105(1), 26-44. https://doi.org/10.1108/02635570510575171.
  • Gao, Y. and Liu, H. (2022). Artificial intelligence-enabled personalization in interactive marketing: a customer journey perspective. Journal of Research in Interactive Marketing, 17(5), 1-18, https://doi.org/10.1108/jrim-01-2022-0023.
  • Güneş, H. (2022). akademik ve idari personelin bireysel emeklilik okuryazarliğinin tespiti: makü örneği. Muhasebe Ve Finans İncelemeleri Dergisi, 5(1), 39-51. https://doi.org/10.32951/mufider.1000689.
  • Onat, O. K., & Yöntem, H. (2022). Finansal okuryazarliğin bireysel emeklilik sistemi tercihlerine etkisi: burdur mehmet akif ersoy üniversitesinde bir araştirma. Finansal Araştırmalar Ve Çalışmalar Dergisi, 14(26), 165-192. https://doi.org/10.14784/marufacd.1055196.
  • Akgün, M. K., & Bozkurt, Ö. (2023). Bireysel emeklilik sistemindeki katılımcıların memnuniyet ve güven algılarının incelenmesi. Çalışma İlişkileri Dergisi, 14(1), 1-19.

GenAI-Based Private Pension Information and Recommendation System

Yıl 2024, Cilt: 17 Sayı: 3, 207 - 222, 31.07.2024
https://doi.org/10.17671/gazibtd.1475239

Öz

This paper presents the design of an innovative private pension information and recommendation system powered by generative artificial intelligence (GenAI). The system is tailored to leverage GenAI algorithms to analyze user data and generate personalized retirement planning advice. By integrating GenAI, the system seeks to significantly enhance financial literacy among users, providing them with a deeper understanding of retirement planning and financial products. The GenAI-driven insights will facilitate tailored investment strategies, enabling users to make informed decisions that align with their long-term retirement goals and risk preferences. This approach aims not only to improve individual financial outcomes but also to democratize access to financial advice that is traditionally available only through financial advisors. As the system evolves, it is expected to adapt to changing economic conditions and personal circumstances, offering dynamic advice that keeps pace with users' life changes. The goal of this system is to foster a proactive approach to retirement planning, thereby enhancing the financial well-being and security of its users as they approach and enter retirement.

Kaynakça

  • Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., Polosukhin, I. (2017). Attention is all you need. Advances in neural information processing systems, 30.
  • Shaw, P., Uszkoreit, J., Vaswani, A.(2018). Self-attention with relative position representations. arXiv preprint arXiv:1803.02155.
  • Ghojogh B., Ghodsi, A. (2020). Attention mechanism, transformers, bert, and gpt: tutorial and survey
  • Devlin, J., Chang, M.-W., Lee, K., Toutanova, K. (2018). Bert: Pre-training of deep bidirectional transformers for language understanding. ArXiv preprint arXiv:1810.04805.
  • Liu, Q., Kusner, M. J., Blunsom, P. (2020). A survey on contextual Embeddings. arXiv preprint arXiv:2003.07278.
  • Roumeliotis, K. I., Tselikas, N. D., Nasiopoulos, D. K. (2023). Llama 2: Early adopters’ utilization of meta’s new open-source pretrained model.
  • Baladn, A., Sastre, I., Chiruzzo, L., Ros, A. (2023). Retuyt-inco at bea 2023 shared task: Tuning open-source llms for generating teacher responses. In: Proceedings of the 18th Workshop on Innovative Use of NLP for Building Educational Applications (BEA 2023), 756–765.
  • Nay, J. J. (2023). Large language models as fiduciaries: A case study toward robustly communicating with artificial intelligence through legal standards.
  • Sennrich, R., Haddow, B., Birch, A. (2015). Neural machine translation of rare words with subword units. arXiv preprint arXiv:1508.07909.
  • Zhuo, T. Y., Li, Z., Huang, Y., Li, Y.-F., Wang, W., Haffari, G., Shiri, F. (2023). On robustness of prompt-based semantic parsing with large pretrained language model: An empirical study on codex. arXiv preprint arXiv:2301.12868.
  • Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P. (2023). Vicuna: An open-source chatbot impressing gpt-4 with 90%* chatgpt quality. March.
  • Yao, Z., Yazdani Aminabadi, R., Zhang, M., Wu, X., Li, C., He, Y. (2022). Zeroquant: Efficient and affordable post-training quantization for large-scale transformers. Advances in Neural Information Processing Systems, 35, 27168–27183.
  • Zou, A., Wang, Z., Kolter, J. Z., Fredrikson, M. (2023). Universal and transferable adversarial attacks on aligned language models,” arXiv preprint arXiv:2307.15043.
  • Katz, D. M., Bommarito, M. J., Gao, S., Arredondo, P. (2023). GPT-4 Passes the Bar Exam. March.
  • Jung, D., Dorner, V., Glaser, F. and Morana, S. (2018a). Robo-advisory: digitalization and automation of financial advisory. Business and Information Systems Engineering, 60(1),81-86. https://doi.org/10.1007/s12599-018-0521-9.
  • Jung, D., Dorner, V., Weinhardt, C. and Pusmaz, H. (2018b).Designing a robo-advisor for risk-averse, low-budget consumers. Electronic Markets, 28(3), 367-380. https://doi.org/10.1007/s12525-017-0279-9.
  • D’Acunto, F., Prabhala, N. and Rossi, A.G. (2019). The promises and pitfalls of robo-advising. The Review of Financial Studies, 32(5), 1983-2020. https://doi.org/10.1093/rfs/hhz014.
  • Isaia, E. and Oggero, N. (2022). The potential use of RAs among the young generation: evidence from Italy. Finance Research Letters, 48, 103046. https://doi.org/10.1016/j.frl.2022.103046.
  • Au, C.D., Klingenberger, L., Svoboda, M. and Frere, E. (2021). Business model of sustainable robo-advisors: empirical insights for practical implementation. Sustainability,13(23),13009. https://doi.org/10.3390/su132313009.
  • Oh, S., Park, M.J., Kim, T.Y. and Shin, J. (2022). Marketing strategies for fintech companies: text data analysis of social media posts. Management Decision, 61(1), 243-268. https://doi.org/10.1108/md-09-2021-1183.
  • Rodrigues, L.F., Oliveira, A. and Rodrigues, H. (2023). Technology management has a significant impact on digital transformation in the banking sector. International Review of Economics and Finance, 88, 1375-1388. https://doi.org/10.1016/j.iref.2023.07.040.
  • McAfee, A., Brynjolfsson, E., Davenport, T.H., Patil, D.J. and Barton, D. (2012). Big data: the management revolution. Harvard Business Review, 90(10), 60-68.
  • Huang, E.Y. and Lin, C.Y. (2005). Customer-oriented financial service personalization”, Industrial Management and Data Systems, 105(1), 26-44. https://doi.org/10.1108/02635570510575171.
  • Gao, Y. and Liu, H. (2022). Artificial intelligence-enabled personalization in interactive marketing: a customer journey perspective. Journal of Research in Interactive Marketing, 17(5), 1-18, https://doi.org/10.1108/jrim-01-2022-0023.
  • Güneş, H. (2022). akademik ve idari personelin bireysel emeklilik okuryazarliğinin tespiti: makü örneği. Muhasebe Ve Finans İncelemeleri Dergisi, 5(1), 39-51. https://doi.org/10.32951/mufider.1000689.
  • Onat, O. K., & Yöntem, H. (2022). Finansal okuryazarliğin bireysel emeklilik sistemi tercihlerine etkisi: burdur mehmet akif ersoy üniversitesinde bir araştirma. Finansal Araştırmalar Ve Çalışmalar Dergisi, 14(26), 165-192. https://doi.org/10.14784/marufacd.1055196.
  • Akgün, M. K., & Bozkurt, Ö. (2023). Bireysel emeklilik sistemindeki katılımcıların memnuniyet ve güven algılarının incelenmesi. Çalışma İlişkileri Dergisi, 14(1), 1-19.
Toplam 27 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Doğal Dil İşleme, Yapay Zeka (Diğer)
Bölüm Makaleler
Yazarlar

Ezgi Avcı 0000-0002-9826-1027

Mehmet Furkan Atik 0009-0009-2038-5212

Nur Muazzez Memiş 0009-0005-7884-0469

Yayımlanma Tarihi 31 Temmuz 2024
Gönderilme Tarihi 29 Mayıs 2024
Kabul Tarihi 25 Haziran 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 17 Sayı: 3

Kaynak Göster

APA Avcı, E., Atik, M. F., & Memiş, N. M. (2024). Üretken Yapay Zekaya Dayalı Bireysel Emeklilik Bilgilendirme ve Öneri Sistemi. Bilişim Teknolojileri Dergisi, 17(3), 207-222. https://doi.org/10.17671/gazibtd.1475239