Akciğer tümör tespiti için mikrodalga sistem tasarımı ve analizler
Yıl 2023,
, 2261 - 2278, 12.04.2023
Mustafa Mutlu
,
Çetin Kurnaz
Öz
Bu çalışma temel olarak üç aşamadan oluşmaktadır. Birinci aşamada, akciğerin iletkenlik değerindeki değişimin yüksek olduğu 1-10 GHz frekansları aralığında çalışan eliptik bir mikroşerit anten tasarlanmıştır. İkinci aşamada CST programı kullanılarak içine farklı çaplı tümör yerleştirilebilen bir göğüs modeli oluşturulmuştur. Üçüncü aşamada ise göğüs modeline en uygun şekilde verici ve alıcı anten yerleştirilerek, tümörün çapına ve sayısına bağlı olarak vericiden gönderilen sinyalin yankıları alıcı anten ile kaydedilmiştir. Çapı 1mm den başlayarak 1mm aralıklarla 30mm’ye kadar değişen tek tümör durumda alınan sinyalin genlik ve zaman özellikleri çıkarılmıştır. Alınan sinyalin genlik ve zaman özellikleri kullanılarak akciğer içine yerleştirilen tümörün çapı tahmin edilmiştir. Analiz sonuçlarından çoklu regresyon analizi ile tümör çapını %99.4 doğrulukla veren yeni bir matematiksel model önerilmiştir. Çalışmanın son aşamasında ise akciğer içinde birden fazla tümör olması durumu 8 farklı senaryo ile incelenmiş ve tümör çaplarına ve konumlarına bağlı değerlendirmeler yapılmıştır.
Kaynakça
- 1. WHO, 2022. Report on cancer: setting priorities, investing wisely and providing care for all.
https://www.who.int/publications/i/item/9789240001299
- 2. WCRF, 2022. Cancer trends - statistics per cancer type | WCRF International. https://www.wcrf.org/diet-and-cancer/cancer-trends/
- 3. Munson, R.E., Single Slot Cavity Antennas Assembly, U.S. Patent No.3713162, 1973.
- 4. Scarpello M.L. et al., Design of an Implantable Slot Dipole Conformal Flexible Antenna for Biomedical Applications. IEEE Transactions on Antennas and Propagation. 2011. 59(10): p.3556-3564.
- 5. Li H., Shaoqiu, S., Guo, Y.X., Broadband circularly polarized implantable antenna for biomedical applications. Electronics Letters, 2016, 52(7): p. 504-506.
- 6. Loktongbam, P., Solanki, L.S., Design and Analysis of an Implantable Patch Antenna for Biomedical Applications. International Journal of Engineering Technology Science and Research. 2017. 4(5): p. 126-138.
- 7. Nabeel Ahmed Malik, A.A., et al., Implantable Antennas for Bio-Medical Applications. IEEE Journal of Electromagnetics, RF, and Microwaves in Medicine and Biology. 2021. 5(1): p. 84-96.
- 8. Manjulatha V., Sri Kavya K.Ch. Implantable Antennas for Biomedical Applications. ARPN Journal of Engineering and Applied Sciences. 2016. 11(9): p. 5632-5636.
- 9. Annakamatchi, M. Keralshalini, V. Design of Spiral Shaped Patch Antenna for Bio-medical Applications. International Journal of Pure and Applied Mathematics. 2018. 118(11). p.131-134.
- 10. Rajkamal, K. Immadi, G. Design and Analysis of Different Substrate Materials for UWB Antenna used for Biomedical Applications. Journal of Theoretical and Applied Information Technology. 2018. 96(7). p. 2015-2024.
- 11. Wahiba, G. Sarah, I. Design and Analysis of an Implantable Microstrip Patch Antenna for Medical Applications. 5th International Conference on Electrical Engineering - Boumerdes. 2017 doi: 10.1109/ICEE-B.2017.8192107.
- 12. Arora G, Maman P, Sharma A, Verma N, Puri V. Systemic Overview of Microstrip Patch Antenna's for Different Biomedical Applications. 2021.11(3): p.439-449.
- 13. Mutlu, M. Kurnaz, Ç. Mikrodalga Görüntüleme Sistemleri için Mikroşerit Anten Tasarımı. European Journal of Science and Technology Special Issue. 2020. pp. 129-137.
- 14. Sabban, A., New Wideband Compact Wearable Slot Antennas for Medical and Sport Sensors. Journal of Sensor Technology. 2018. 8. p.18-34.
- 15. Selvaraj, V., Srinivasan, P., Kumar, K.J.J., Krishnan, R., Annamalai, K., Highly Directional Microstrip Ultra-Wide Band Antenna for Microwave Imaging System. Acta Graphica. 2018. 28(1): p. 35-40.
- 16. Biçer, M. B., Aydın, A. Design and Fabrication of Rectangular Microstrip Antenna with Various Flexible Substrates. 2021 International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies (3ICT), 2021, pp. 360-364, doi: 10.1109/3ICT53449.2021.9581451.
- 17. Latif A., Design of a UWB Coplanar Fed Antenna and Circular Miniature Printed Antenna for Medical Applications. In book: Radio Frequency Antennas For 5G, IOT and Medical Applications, 2020, DOI: 10.5772/intechopen.93205.
- 18. Sheeba, R.I., Jayanthy, T., Design and Implementation of Flexible Wearable Antenna on Thyroid Gland in the Detection of Cancer Cells. Biomedical Research. 2018. 29 (11): p.2307-2312.
- 19. Inum, R., Rana, M. Shushama, K.N., Quader, A., EBG Based Microstrip Patch Antenna for Brain Tumor Detection via Scattering Parameters in Microwave Imaging System. International Journal of Biomedical Imaging. 2018. 2018(8241438): p. 1-12.
- 20. Saleeb, D.A., Helmy, R.M., Areed, N.F.F., M. Marey, Abdulkawi, W.M., Elkorany, A.S. A Technique for the Early Detection of Brain Cancer Using Circularly Polarized Reconfigurable Antenna Array. IEEE Access. 2021. 9: p. 133786-133794.
- 21. AlShehhi, H., Alzarouni M., AlYammahi, N., Shubair, R., Ali N. Compact Low-Profile Wearable Antennas for Breast Cancer Detection. Technical Report, 2018. Cornell University
- 22. Alsharif, F. and Kurnaz, Ç. Wearable Microstrip Patch Ultra Wide Band Antenna for Breast Cancer Detection. 41st International Conference on Telecommunications and Signal Processing (TSP), DOI:10.1109/TSP.2018.8441335, 2018.
- 23. Çalışkan R., Gültekin, S.S., Uzer, D., Dündar, Ö.A Microstrip Patch Antenna Design for Breast Cancer Detection. Procedia - Social and Behavioral Sciences. 2015. 195: p. 2905-2911.
- 24. Gupta, H.K., Sharma, R., Thakre, V.V. Breast Cancer Detection by T-Shaped Slotted Planner Antenna. Indian Journal of Science and Technology. 2017. 10(8): p. 1-7.
- 25. Wang, L. Microwave Sensors for Breast Cancer Detection. Sensors. 2018. 18(2): p. 1-17.
- 26. Abdelhamid, M.M., Allam, A.M. Detection of lung cancer using ultra wide band antenna. Loughborough Antennas & Propagation Conference. 2016.
- 27. Al-Nahiun, A.A.K., Mahbub, F., Islam, R., Akash, S. B., Hasan, R. R., Rahman, M. A. Performance Analysis of Microstrip Patch Antenna for the Diagnosis of Brain Cancer & Tumor using the Fifth-Generation Frequency Band. IEEE International IOT, Electronics and Mechatronics Conference (IEMTRONICS). 2021. doi: 10.1109/IEMTRONICS52119.2021.9422503.
- 28. Gupta, S.H., Goel, S., Kumar, M., Rajawat, A., Singh, B. Design of terahertz antenna to detect lung cancer and classify its stages using machine learning. Optik. 2022. 249. https://doi.org/10.1016/j.ijleo.2021.168271.
- 29. Akash S.B., Mahbub F., Islam R., Al-Nahiun S.A.K., Hasan R.R., Rahman M. Diagnosis of Early-Stage Lung Cancer and Tumor Using the 5G Band Microstrip Patch Antenna. Smart Trends in Computing and Communications. Lecture Notes in Networks and Systems. 2022.
- 30. Salsabilah, K.V., Wijanto, H., Saputera, Y.P. Rectangular Microstrip 2×2 Array Antenna 10 GHz for X-Band FMCW Radar as Lungs Detector. Telkom University Journal. 2021. 1(1): p. 1-10.
- 31. Asha, J.M.S., Kumar, K.M. Design and analysis of Microstrip Patch Antenna for Lung Tumor. International Research Journal of Engineering and Technology. 2017. 4(4): p. 3330-3334.
- 32. Computer Simulation Technology, 2022. https://www.3ds.com/products-services/simulia/products/cst-studio-suite
- 33. Austin, J. H., Müller, N. L., Friedman, P. J., Hansell, D. M., Naidich, D. P., Remy-Jardin, M., Webb, W. R., Zerhouni, E. A., Glossary of terms for CT of the lungs: recommendations of the Nomenclature Committee of the Fleischner Society. Radiology. 1996. 200(2): p. 327–331.
- 34. Chen, B. Wang, J. Qi, H. Zhang, J. Chen, S. and Wang, X. The Specific Absorption Rate of Tissues in Rats Exposed to Electromagnetic Plane Waves in the Frequency Range of 0.05–5 GHz and SARwb in free-moving Rats. Australasian Physical & Engineering Sciences in Medicine March. 2017. 40(1): p. 21–28.
- 35. Balanis, A.C. Advanced Engineering Electromagnetics.2012. Second Edition, John Wiley & Sons. USA.
- 36. Wang, R.J., Sun, B.Y., Wang, H.X., Pang, S., Xu, X., Sun, Q. Experimental Study of Dielectric Properties of Human Lung Tissue in Vitro. Journal of Medical and Biological Engineering. 2014. 34(6): p. 598-604.
- 37. Modelling the frequency dependence of the dielectric properties to a 4 dispersions spectrum. 2022. http://niremf.ifac.cnr.it/docs/DIELECTRIC/AppendixC.html#C09)-
- 38. Muhammad, S. N., Isa, M. M., Jamlos, F. Review article of microwave imaging techniques and dielectric properties for lung tumor detection. AIP Conference Proceedings 2203, 020012 (2020); https://doi.org/10.1063/1.5142104
- 39. Gabriel, C., Gabriel, S., Corthout, E. The dielectric properties of biological tissues: I. Literature survey. Physics in Medicine & Biology. 1996, 41(11), pp.2231-2249.
- 40. Gabriel, S., Lau, R. W., Gabriel, C. The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz. Physics in Medicine & Biology. 1996, 41(11), pp.2251-2269.
- 41. Miklavcic, D., Pavselj, N., Hart, F. X. Electric Properties of Tissues. Wiley Encyclopedia of Biomedical Engineering. New York, NY, USA: Wiley, April 2006. https://doi.org/10.1002/9780471740360.ebs0403
- 42. Andreuccetti, D., Fossi, R. Petrucci, C. An Internet resource for the calculation of the dielectric properties of body tissues in the frequency range 10 Hz - 100 GHz. IFAC-CNR, Florence (Italy), 1997. Available: http://niremf.ifac.cnr.it/tissprop/