Araştırma Makalesi
BibTex RIS Kaynak Göster

Sürekli mıknatıslı senkron motorların hız-algılayıcısız model öngörülü akım kontrolü

Yıl 2025, , 355 - 364, 16.08.2024
https://doi.org/10.17341/gazimmfd.1148954

Öz

Sürekli mıknatıslı senkron motorlar (SMSM’ler) yüksek verimleri, basit yapıları ve/veya geniş hız aralıklarında kullanılabilir olmaları nedeniyle yüksek başarımlı değişken moment veya hız kontrolü gerektiren endüstriyel uygulamalarda ve elektrikli araçlarda yaygın olarak kullanılmaktadır. Bu çalışmada, SMSM’lerin hız-algılayıcısız model öngörülü akım kontrolü için gerekli olan duran eksen takımındaki stator akım bileşenleri ve rotor açısal hızı/konumu ile birlikte yük momentinin eşzamanlı kestirimi için genişletilmiş karmaşık Kalman filtresi (GKKF) tabanlı gözlemleyici tasarlanmıştır. Tasarlanan GKKF gözlemleyicisi ve model öngörülü akım kontrol sistemi sıfır hız ve hız terslendirmelerinide içeren geniş hız aralığında farklı yük momentleri altında zorlayıcı senaryolar ile test edilmiş ve doğrulanmıştır. Ayrıca hem GKKF’nin hem de model öngörülü akım kontrol sisteminin SMSM parametre değişimlerine karşı başarımı analiz edilmiştir. Benzetim sonuçları GKKF gözlemleyicisi ve bu gözlemleyiciyi kullanan hız-algılayıcısız model öngörülü akım kontrol sisteminin oldukça yüksek başarıma sahip olduğunu onaylamaktadır. Ek olarak GKKF gözlemleyicisinin işlem yükü bu çalışmada kestirilen durum ve parametreleri kestiren geleneksel genişletilmiş Kalman filtresi ile karşılaştırılmış ve işlem yükünün düştüğü gösterilmiştir.

Destekleyen Kurum

Bu çalışma Kayseri Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi

Proje Numarası

FKB-2022-1082

Teşekkür

Bu çalışma Kayseri Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi tarafından FKB-2022-1082 numaralı proje kapsamında desteklenmiştir.

Kaynakça

  • 1. Bouguenna, I.F., Tahour, A., Kennel, R., Abdelrahem, M. Multiple-Vector Model Predictive Control with Fuzzy Logic for PMSM Electric Drive Systems, Energies, 14, 1-23, 2021.
  • 2. Tören M., Mollahasanoğlu, H. Investigation of the effect of different power degree NdFeB magnets used in interior permanent magnet brushless direct current motor (IPMBLDC) on motor performance, Journal of the Faculty of Engineering and Architecture of Gazi University 38 (3), 1389–1402, 2023.
  • 3. Kurnaz Araz, H., Yilmaz, M., Design procedure and implementation of a high-efficiency PMSM with reduced magnetmass and torque-ripple for electric vehicles, Journal of the Faculty of Engineering and Architecture of Gazi University 35 (2), 1089-1109, 2020.
  • 4. Boldea, I., Control issues in adjustable speed drives, IEEE Industrial Electronics Magazine, 2 (3), 32–50, 2008.
  • 5. Guo, Q., Pan, T., Liu, J., Chen, S., Explicit model predictive control of permanent magnet synchronous motors based on multi-point linearization, Transactions of the Institute of Measurement and Control, 43 (12), 2872–2881, 2021.
  • 6. Kivanc, OC., Ozturk, SB., Sensorless PMSM Drive Based on Stator Feedforward Voltage Estimation Improved with MRAS Multiparameter Estimation, IEEE/ASME Transactions on Mechatronics, 23 (3), 1326–1337, 2018.
  • 7. Abareshi, S., Tohidi, S., Bannae Sharifian, MB., Younesi, A., Model predictive control by combining vectors for surface and interior permanent-magnet synchronous motor, International Transactions on Electrical Energy Systems, 31 (8), 1-16, 2021.
  • 8. Sandre-Hernandez, O., Rangel-Magdaleno, J., Morales-Caporal, R., A Comparison on Finite-Set Model Predictive Torque Control Schemes for PMSMs, IEEE Trans. Power Electron., 33 (10), 8838–8847, 2018.
  • 9. Zerdali, E, Demir, R., Speed-sensorless predictive torque controlled induction motor drive with feed-forward control of load torque for electric vehicle applications, Turkish Journal of Electrical Engineering and Computer Sciences, 29 (1), 223-240, 2020.
  • 10. Xu, Y., Wang, L., Yuan, W., Yin, Z., Disturbance rejection speed sensorless control of PMSMs based on full order adaptive observer, J. Power Electron., 21 (5), 804–814, 2021.
  • 11. Bıçak A., Gelen, A., Sensorless direct torque control based on seven-level torque hysteresis controller for five-phase IPMSM using a sliding-mode observer, Engineering Science and Technology, an International Journal, 24 (5), 1134-1143, 2021.
  • 12. Bernard, P., Praly, L., Estimation of Position and Resistance of a Sensorless PMSM: A Nonlinear Luenberger Approach for a Nonobservable System, IEEE Trans. Autom. Control, 66 (2), 481–496, 2021.
  • 13. Zhu, Y., Tao, B., Xiao, M., Yang, G., Zhang, X., Lu, K., Luenberger Position Observer Based on Deadbeat-Current Predictive Control for Sensorless PMSM, Electronics, 9 (8),1-17, 2020.
  • 14. Urbanski, K., Janiszewski, D., Sensorless Control of the Permanent Magnet Synchronous Motor, Sensors, 19 (16: 3546), 1-25, 2019.
  • 15. Zerdali, E., Wheeler, P., Speed-Sensorless Finite Control Set Model Predictive Control of PMSM with Permanent Magnet Flux Linkage Estimation, 2020 2nd Global Power, Energy and Communication Conference (GPECOM), Izmir, Turkey, 114–119 20-23 October 2020.
  • 16. Raja, R., Sebastian, T., Wang, M., Online Stator Inductance Estimation for Permanent Magnet Motors Using PWM Excitation, IEEE Trans. Transp. Electrification, 5 (1) 107–117, 2019.
  • 17. Abo-Khalil, AG., Eltamaly, AM., Alsaud, MS., Sayed, K., Alghamdi, AS., Sensorless control for PMSM using model reference adaptive system, International Transactions on Electrical Energy Systems, 31 (e12733), 1-11, 2021.
  • 18. Li X., Kennel, R., General Formulation of Kalman-Filter-Based Online Parameter Identification Methods for VSI-Fed PMSM, IEEE Trans. Ind. Electron., 68 (4), 2856–2864, 2021.
  • 19. Tondpoor, K., Saghaiannezhad, SM., Rashidi, A., Sensorless Control of PMSM Using Simplified Model Based on Extended Kalman Filter, 11th Power Electronics, Drive Systems, and Technologies Conference (PEDSTC), Tehran, Iran, 1–5, 04-06 February 2020.
  • 20. Nordin, MI., Lazi, JM., Talib, MHN., Ibrahim, Z., Speed Sensorless Control for PMSM Drives Using Extended Kalman Filter, Jurnal Teknologi (Sciences & Engineering), 84 (1), 77–83, 2022.
  • 21. Li, X., Yang, Q., Tian, W., Karamanakos, P., Kennel, R., A Dual Reference Frame Multistep Direct Model Predictive Current Control with a Disturbance Observer for SPMSM Drives, IEEE Transactions on Power Electronics, 37 (3), 2857–2869, 2022.
  • 22. Bolognani, S., Oboe, R., Zigliotto, M., Sensorless full-digital PMSM drive with EKF estimation of speed and rotor position, IEEE Trans. Ind. Electron., 46 (1), 184–191, 1999.
  • 23. Vas, P., Sensorless Vector and Direct Torque Control, Oxford University Press, 1998.
  • 24. Demir, R., Robust stator flux and load torque estimations for induction motor drives with EKF-based observer, Electrical Engineering, 105 (1), 551–562, 2023.
  • 25. Habibullah M. and Lu, D. D. C., A Speed-Sensorless FS-PTC of Induction Motors Using Extended Kalman Filters’, IEEE Trans. Ind. Electron., 62 (11), 6765–6778, 2015.
  • 26. Alonge, F., D׳Ippolito, F., Fagiolini, A., Sferlazza, A., Extended complex Kalman filter for sensorless control of an induction motor, Control Engineering Practice, 27, 1–10, 2014.
  • 27. Demir, R., Speed-sensorless Predictive Current Controlled PMSM Drive with Adaptive Filtering-based MRAS Speed Estimators, International Journal of Control, Automation and Systems, 21 (8), 2577–86, 2023.
  • 28. MathWorks Inc., Simulink. Simulation and Model- Based Design. MA, USA: Natick, 2023.

Speed-Sensorless model predictive current control of permanent magnet synchronous motors

Yıl 2025, , 355 - 364, 16.08.2024
https://doi.org/10.17341/gazimmfd.1148954

Öz

Permanent magnet synchronous motors (PMSMs) are widely used in industrial applications and electric vehicles which require high-performance variable torque and/or speed due to their high efficiency, simple structure, and wide speed range. In this study, an extended complex Kalman filter (ECKF) based observer is designed for simultaneous estimation of the load torque with the stator stationary axis components of stator currents and rotor angular velocity/position required for speed-sensorless model predictive current control of PMSMs. The designed ECKF observer and model predictive current control system has been tested and validated with challenging scenarios under different load torques in a wide speed range including zero speed and speed reversals. In addition, the performance of both the ECKF and the model predictive current control system is analyzed against parameter changes PMSM. The simulation results confirm that the ECKF observer and the speed-sensorless model predictive current control system using this observer have very high performance. In addition, the computational burden of the ECKF observer was compared with the conventional extended Kalman filter, which estimates the states and parameters estimated in this study, and it was shown that the processing computational burden decreased.

Proje Numarası

FKB-2022-1082

Kaynakça

  • 1. Bouguenna, I.F., Tahour, A., Kennel, R., Abdelrahem, M. Multiple-Vector Model Predictive Control with Fuzzy Logic for PMSM Electric Drive Systems, Energies, 14, 1-23, 2021.
  • 2. Tören M., Mollahasanoğlu, H. Investigation of the effect of different power degree NdFeB magnets used in interior permanent magnet brushless direct current motor (IPMBLDC) on motor performance, Journal of the Faculty of Engineering and Architecture of Gazi University 38 (3), 1389–1402, 2023.
  • 3. Kurnaz Araz, H., Yilmaz, M., Design procedure and implementation of a high-efficiency PMSM with reduced magnetmass and torque-ripple for electric vehicles, Journal of the Faculty of Engineering and Architecture of Gazi University 35 (2), 1089-1109, 2020.
  • 4. Boldea, I., Control issues in adjustable speed drives, IEEE Industrial Electronics Magazine, 2 (3), 32–50, 2008.
  • 5. Guo, Q., Pan, T., Liu, J., Chen, S., Explicit model predictive control of permanent magnet synchronous motors based on multi-point linearization, Transactions of the Institute of Measurement and Control, 43 (12), 2872–2881, 2021.
  • 6. Kivanc, OC., Ozturk, SB., Sensorless PMSM Drive Based on Stator Feedforward Voltage Estimation Improved with MRAS Multiparameter Estimation, IEEE/ASME Transactions on Mechatronics, 23 (3), 1326–1337, 2018.
  • 7. Abareshi, S., Tohidi, S., Bannae Sharifian, MB., Younesi, A., Model predictive control by combining vectors for surface and interior permanent-magnet synchronous motor, International Transactions on Electrical Energy Systems, 31 (8), 1-16, 2021.
  • 8. Sandre-Hernandez, O., Rangel-Magdaleno, J., Morales-Caporal, R., A Comparison on Finite-Set Model Predictive Torque Control Schemes for PMSMs, IEEE Trans. Power Electron., 33 (10), 8838–8847, 2018.
  • 9. Zerdali, E, Demir, R., Speed-sensorless predictive torque controlled induction motor drive with feed-forward control of load torque for electric vehicle applications, Turkish Journal of Electrical Engineering and Computer Sciences, 29 (1), 223-240, 2020.
  • 10. Xu, Y., Wang, L., Yuan, W., Yin, Z., Disturbance rejection speed sensorless control of PMSMs based on full order adaptive observer, J. Power Electron., 21 (5), 804–814, 2021.
  • 11. Bıçak A., Gelen, A., Sensorless direct torque control based on seven-level torque hysteresis controller for five-phase IPMSM using a sliding-mode observer, Engineering Science and Technology, an International Journal, 24 (5), 1134-1143, 2021.
  • 12. Bernard, P., Praly, L., Estimation of Position and Resistance of a Sensorless PMSM: A Nonlinear Luenberger Approach for a Nonobservable System, IEEE Trans. Autom. Control, 66 (2), 481–496, 2021.
  • 13. Zhu, Y., Tao, B., Xiao, M., Yang, G., Zhang, X., Lu, K., Luenberger Position Observer Based on Deadbeat-Current Predictive Control for Sensorless PMSM, Electronics, 9 (8),1-17, 2020.
  • 14. Urbanski, K., Janiszewski, D., Sensorless Control of the Permanent Magnet Synchronous Motor, Sensors, 19 (16: 3546), 1-25, 2019.
  • 15. Zerdali, E., Wheeler, P., Speed-Sensorless Finite Control Set Model Predictive Control of PMSM with Permanent Magnet Flux Linkage Estimation, 2020 2nd Global Power, Energy and Communication Conference (GPECOM), Izmir, Turkey, 114–119 20-23 October 2020.
  • 16. Raja, R., Sebastian, T., Wang, M., Online Stator Inductance Estimation for Permanent Magnet Motors Using PWM Excitation, IEEE Trans. Transp. Electrification, 5 (1) 107–117, 2019.
  • 17. Abo-Khalil, AG., Eltamaly, AM., Alsaud, MS., Sayed, K., Alghamdi, AS., Sensorless control for PMSM using model reference adaptive system, International Transactions on Electrical Energy Systems, 31 (e12733), 1-11, 2021.
  • 18. Li X., Kennel, R., General Formulation of Kalman-Filter-Based Online Parameter Identification Methods for VSI-Fed PMSM, IEEE Trans. Ind. Electron., 68 (4), 2856–2864, 2021.
  • 19. Tondpoor, K., Saghaiannezhad, SM., Rashidi, A., Sensorless Control of PMSM Using Simplified Model Based on Extended Kalman Filter, 11th Power Electronics, Drive Systems, and Technologies Conference (PEDSTC), Tehran, Iran, 1–5, 04-06 February 2020.
  • 20. Nordin, MI., Lazi, JM., Talib, MHN., Ibrahim, Z., Speed Sensorless Control for PMSM Drives Using Extended Kalman Filter, Jurnal Teknologi (Sciences & Engineering), 84 (1), 77–83, 2022.
  • 21. Li, X., Yang, Q., Tian, W., Karamanakos, P., Kennel, R., A Dual Reference Frame Multistep Direct Model Predictive Current Control with a Disturbance Observer for SPMSM Drives, IEEE Transactions on Power Electronics, 37 (3), 2857–2869, 2022.
  • 22. Bolognani, S., Oboe, R., Zigliotto, M., Sensorless full-digital PMSM drive with EKF estimation of speed and rotor position, IEEE Trans. Ind. Electron., 46 (1), 184–191, 1999.
  • 23. Vas, P., Sensorless Vector and Direct Torque Control, Oxford University Press, 1998.
  • 24. Demir, R., Robust stator flux and load torque estimations for induction motor drives with EKF-based observer, Electrical Engineering, 105 (1), 551–562, 2023.
  • 25. Habibullah M. and Lu, D. D. C., A Speed-Sensorless FS-PTC of Induction Motors Using Extended Kalman Filters’, IEEE Trans. Ind. Electron., 62 (11), 6765–6778, 2015.
  • 26. Alonge, F., D׳Ippolito, F., Fagiolini, A., Sferlazza, A., Extended complex Kalman filter for sensorless control of an induction motor, Control Engineering Practice, 27, 1–10, 2014.
  • 27. Demir, R., Speed-sensorless Predictive Current Controlled PMSM Drive with Adaptive Filtering-based MRAS Speed Estimators, International Journal of Control, Automation and Systems, 21 (8), 2577–86, 2023.
  • 28. MathWorks Inc., Simulink. Simulation and Model- Based Design. MA, USA: Natick, 2023.
Toplam 28 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik, Elektrik Makineleri ve Sürücüler
Bölüm Makaleler
Yazarlar

Rıdvan Demir 0000-0001-6509-9169

Duygu Gümüşcü Bu kişi benim 0000-0002-5666-9665

Proje Numarası FKB-2022-1082
Erken Görünüm Tarihi 1 Temmuz 2024
Yayımlanma Tarihi 16 Ağustos 2024
Gönderilme Tarihi 26 Temmuz 2022
Kabul Tarihi 6 Nisan 2024
Yayımlandığı Sayı Yıl 2025

Kaynak Göster

APA Demir, R., & Gümüşcü, D. (2024). Sürekli mıknatıslı senkron motorların hız-algılayıcısız model öngörülü akım kontrolü. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 40(1), 355-364. https://doi.org/10.17341/gazimmfd.1148954
AMA Demir R, Gümüşcü D. Sürekli mıknatıslı senkron motorların hız-algılayıcısız model öngörülü akım kontrolü. GUMMFD. Ağustos 2024;40(1):355-364. doi:10.17341/gazimmfd.1148954
Chicago Demir, Rıdvan, ve Duygu Gümüşcü. “Sürekli mıknatıslı Senkron motorların hız-algılayıcısız Model öngörülü akım Kontrolü”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 40, sy. 1 (Ağustos 2024): 355-64. https://doi.org/10.17341/gazimmfd.1148954.
EndNote Demir R, Gümüşcü D (01 Ağustos 2024) Sürekli mıknatıslı senkron motorların hız-algılayıcısız model öngörülü akım kontrolü. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 40 1 355–364.
IEEE R. Demir ve D. Gümüşcü, “Sürekli mıknatıslı senkron motorların hız-algılayıcısız model öngörülü akım kontrolü”, GUMMFD, c. 40, sy. 1, ss. 355–364, 2024, doi: 10.17341/gazimmfd.1148954.
ISNAD Demir, Rıdvan - Gümüşcü, Duygu. “Sürekli mıknatıslı Senkron motorların hız-algılayıcısız Model öngörülü akım Kontrolü”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 40/1 (Ağustos 2024), 355-364. https://doi.org/10.17341/gazimmfd.1148954.
JAMA Demir R, Gümüşcü D. Sürekli mıknatıslı senkron motorların hız-algılayıcısız model öngörülü akım kontrolü. GUMMFD. 2024;40:355–364.
MLA Demir, Rıdvan ve Duygu Gümüşcü. “Sürekli mıknatıslı Senkron motorların hız-algılayıcısız Model öngörülü akım Kontrolü”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, c. 40, sy. 1, 2024, ss. 355-64, doi:10.17341/gazimmfd.1148954.
Vancouver Demir R, Gümüşcü D. Sürekli mıknatıslı senkron motorların hız-algılayıcısız model öngörülü akım kontrolü. GUMMFD. 2024;40(1):355-64.