Araştırma Makalesi
BibTex RIS Kaynak Göster

Seru üretim sistemi ile montaj hattı üretim sisteminin farklı işgücü yetkinlik seviyelerinde istatistiksel olarak karşılaştırılması

Yıl 2024, , 2125 - 2142, 20.05.2024
https://doi.org/10.17341/gazimmfd.1220997

Öz

Seru Üretim Sistemi, Japon imalat endüstrisinde ortaya çıkmış bir hücresel üretim sistemidir. Seru Üretim Sistemleri montaj hattının verimlilik ve atölye üretimin esneklik özelliklerini bir arada değerlendirmektedir. Seru yapısında görevli işgücünün çapraz eğitimli ve farklı operasyonlar için gelişmiş yetkinlik seviyelerinde bulunması Seru Üretim Sistemlerinin işlerlik kazanması için gerekli görülmektedir. Bu çalışmada, Seru Üretim Sisteminde görevlendirilmiş farklı işgücü yetkinlik seviyelerindeki çalışanların üretim miktarı, geleneksel montaj hattı üretim sisteminde görevli olmaları sırasında ortaya koydukları üretim miktarı ile karşılaştırılmaktadır. Seru Üretim Sistemi için çalışan yetkinliğinin önemine dikkat çekmek amacıyla yapılan bu çalışmada ürünün tamamını üretmeye yetkin olan çalışanların değişen yetkinlik seviyeleri ile toplam üretim çıktısını etkileme durumları araştırılmıştır. Öncelikle, literatürde iyi bilinen test problemleri kullanılarak geleneksel montaj hattı üretim miktarları, tamsayılı programlama yöntemiyle hesaplanmıştır. Daha sonra, bu test problemleri, farklı yetkinlik seviyelerine sahip işçiler tarafından çalıştırılan serulara dönüştürülerek ilgili işlem süreleri hesaplanmış ve üretim miktarları bulunmuştur. Elde edilen sonuçlar, eşlenik t testi ile kıyaslanmış ve Seru Üretim Sistemlerinin, geleneksel montaj hattı üretim sistemlerine nazaran daha fazla üretim miktarı sağladığı görülmüştür. Ayrıca, montaj hattı ve seru üretim yöntemlerinden elde edilen çıktı miktarlarının farklı test problemleri ve farklı işçi yetkinlik düzeylerinden etkilendiğini göstermek amacıyla 2-yönlü varyans analizi çalışması yapılmıştır.

Kaynakça

  • 1. Zhang, X., Liu, C., Li, W., Evans, S., Yin, Y., Effects of Key Enabling Technologies for Seru Production on Sustainable Performance, Omega, 66, 290-307, 2017.
  • 2. Liu, C., Lian, J., Yin, Y., Li, W., Seru Seisan‐an Innovation of the Production Management Mode in Japan, Asian Journal of Technology Innovation, 18 (2), 89-113, 2010.
  • 3. Sakazume, Y., Is Japanese Cell Manufacturing a New System?: A Comparative Study between Japanese Cell Manufacturing and Cellular Manufacturing, Special English Issue (Production and Logistics), Journal of Japan Industrial Management Association, 55 (6), 341-349, 2005.
  • 4. Liu, C., Stecke, K. E., Lian, J., Yin, Y., An implementation framework for seru production”. International Transactions in Operational Research, 21 (1), 1-19, 2014.
  • 5. Bilgin Sarı, E., Seru Üretim Sistemi: Japon Hücresel İmalat Sistemi, Ankara: Nobel Akademik Yayıncılık, 2020.
  • 6. Miyake, D.I., The Shift From Belt Conveyor Line to Work-Cell Based Assembly Systems to Cope with Increasing Demand Variation in Japanese Industries”. International Journal of Automotive Technology and Management, 6 (4), 419-439, 2006.
  • 7. Kaku, I., Murase, Y., Yin, Y., A Study on Human-Task-Related Performances in Converting Conveyor Assembly Line to Cellular Manufacturing”. European Journal of Industrial Engineering, 2 (1), 17-34, 2008b.
  • 8. Çalışkan E., İşleyen S.K., Çerçioğlu H., A mixed integer mathematical model for loading problem in seru manufacturing systems and matheuristic solution approach, Journal of the Faculty of Engineering and Architecture of Gazi University, 36 (2), 793-806, 2021.
  • 9. Yin, Y., Kaku, I., Stecke, K.E., The Evolution of Seru Production Systems Throughout Canon, NeilsonJournals Publishing, 2008.
  • 10. Kono, H., Fundamental Principles and Viewpoints of Manufacturing Revolution Activities, IEMS, 5, 48-56, 2006.
  • 11. Liu, C., Lian, J., Yin, Y., Li, W., Seru Seisan‐an Innovation of the Production Management Mode in Japan, Asian Journal of Technology Innovation, 18 (2), 89-113, 2010.
  • 12. Furugi A., Haliloğlu M., A mathematical model for line-seru conversion and scheduling problem in seru production system, Journal of the Faculty of Engineering and Architecture of Gazi University, 37 (3), 1213-1224, 2022.
  • 13. Suzuki, Y., Structure of the Japanese Production System: Elusiveness and Reality, Asian Business & Management, 3 (2), 201-219, 2004.
  • 14. Stecke, K.E., Yin, Y., Kaku, I., Murase, Y., Seru: the Organizational Extension of JIT for a Super-Talent Factory”. International Journal of Strategic Decision Sciences (IJSDS), 3 (1), 106-119, 2012.
  • 15. Yin, Y., Stecke, K.E., Swink, M., Kaku, I., Lessons From Seru Production on Manufacturing Competitively in a High Cost Environment”. Journal of Operations Management, 49, 67-76, 2017.
  • 16. Süer, G.A., Tummaluri, R.R., Multi-Period Operator Assignment Considering Skills, Learning and Forgetting in Labour-Intensive Cells”, International Journal of Production Research, 46 (2), 469–493, 2008.
  • 17. Boysen, N., Fliedner, M., Scholl, A., A Classification of Assembly Line Balancing Problems, European Journal of Operational Research, 183, 2, 674–693, 2007.
  • 18. Suksawat, B., HilraokaI, H., Ihara,T., A New Approach Manufacturing Cell Scheduling based on Skill-Based Manufacturing Integrated to Genetic Algorithm, In Towards Synthesis of Micro-Nano-Systems, 325-326, Springer, London, 2005.
  • 19. Fitzpatrick, E.L., Askin, R.G., Forming Effective Worker Teams with Multi-Functional Skill Requirements, Computers and Industrial Engineering, 48 (3), 593–608, 2005.
  • 20. Kuo, Y., Yang, T., Optimization of mixed-skill multi-line operator allocation problem, Computers & Industrial Engineering, 53 (3), 386-393, 2007.
  • 21. Corominas, A., Pastor, R., Plans, J., Balancing Assembly Line with Skilled and Unskilled Workers, Omega, 36 (6), 1126–1132, 2008.
  • 22. Koltai, T., Formulation of Multi-Level Workforce Skill Constraints in Assembly Line Balancing Models, IFAC Proceedings, 46 (9), 772–777, 2013.
  • 23. Yang, C., Gao, J., Balancing Mixed-Model Assembly Lines Using Adjacent Cross-Training in a Demand Variation Environment, Computers and Operations Research, 65, 139–148, 2016.
  • 24. Kaku, I., Gong, J., Tang, J., Yin, Y., Modeling and Numerical Analysis of Line-Cell Conversion Problems, International Journal of Production Research, 47 (8), 2055–2078, 2009.
  • 25. Liu, C., Yang, N., Li, W., Lian, J., Evans, S., Yin, Y., Training and Assignment of Multiskilled Workers for Implementing Seru Cell Production Systems”, The International Journal of Advanced Manufacturing Technology, 69 (5–8), 937–959, 2013.
  • 26. Yu, Y., Tang, J., Sun, W., Yin, Y. Kaku, I., Reducing Worker(s) by Converting Assembly Line into a Pure Cell System, International Journal of Production Economics, 145 (2), 799–806, 2013.
  • 27. Yu, Y., Wang, S., Tang, J., Kaku, I. Sun, W., Complexity of Line Seru, SpringerPlus, 5 (1), 1–26, 2016.
  • 28. Yu, Y., Sun, W., Tang, J., Wang, J., Line-Hybrid Seru System Conversion: Models, Complexities, Properties, Solutions and Insights, Computers and Industrial Engineering, 103, 282–299, 2017.
  • 29. Abdullah, M., ve Süer, G.A. Consideration of Skills in Assembly Lines and Seru Production Systems, Asian Journal of Management Science and Applications, 4 (2), 99-123, 2019.
  • 30. Süer, G.A., Alhawari, O., Operator assignment decisions in a highly dynamic cellular environment”. In Industrial Engineering: Concepts, Methodologies, Tools, and Applications, 1135-1152, IGI Global, 2013.
  • 31. Khalafallah, S., Egilmez, G., A Stochastic Mixed Integer Linear Programming Approach to Skill-Based Workforce Allocation in SERUs”. In IIE Annual Conference. Proceedings, 1070-1075. Institute of Industrial and Systems Engineers (IISE), 2021.
  • 32. Salveson, M.E., The Assembly Line Balancing Problem”. The Journal of Industrial Engineering, 18-25, 1955.
  • 33. Ignall, E.J., A Review of Assembly Line Balancing, The Journal of Industrial Engineering, 16, 244-254, 1965.
  • 34. Mansoor, E.M., Assembly Line Balancing-A Heuristic Algorithm for Variable Operator Performance Levels”. Journal of Industrial Engineering, 19 (12), 618, 1968.
  • 35. Costa, A.M., Miralles, C., Job Rotation in Assembly Lines Employing Disabled Workers, International Journal of Production Economics, 120, 625-632, 2009.
  • 36. Arau´jo, F.F.B., Costa, A.M., Miralles, C., Two Extensions for the ALWABP: Parallel Stations and Collaborative Approach, International Journal of Production Economics, 140, 483–495, 2012.
  • 37. Moreira, M.C.O., Ritt, M., Costa, A.M., Chaves, A.A., Simple Heuristics for the Assembly Line Worker Assignment and Balancing Problem”, Journal of Heuristics, 18, 505–524, 2012.
  • 38. Ramezanian, R., Ezzatpanah, A., Modeling and Solving Multi-Objective Mixed-Model Assembly Line Balancing and Worker Assignment Problem”, Computers & Industrial Engineering, 8, 74-80, 2015.
  • 39. Ritt, M., Costa, A.M., Miralles, C., The Assembly Line Worker Assignment and Balancing Problem with Stochastic Worker Availability”, International Journal of Production Research, 54, 907-922, 2016.
  • 40. Aksut G., Alakas H.M., Eren T., Karacam H., Model proposal for physically ergonomic risky personnel scheduling problem: An application in textile industry for female employees, Journal of the Faculty of Engineering and Architecture of Gazi University, 38 (1), 245-256, 2023.
  • 41. Kaku, I., Gong, J., Tang, J., Yin, Y., A Mathematical Model for Converting Conveyor Assembly Line to Cellular Manufacturing”. Industrial Engineering and Management Systems, 7 (2), 160-170, 2008.
  • 42. Scholl, A., Benchmark data sets by scholl. Assembly Line Balancing Data Dets & Research Topics, 1993. 43. http://www.assembly-line-balancing.de/ (Erişim Tarihi: 16.05.2022).
  • 44. İç Y.T., Elaldı F., Keçeci B., Uzun G.Ö., Limoncuoğlu N., Aksoy İ., An optimization for milling operation of Kevlar fiber-epoxy composite material using factorial design and goal programming methods, Journal of the Faculty of Engineering and Architecture of Gazi University, 34 (3), 1549-1560, 2019.
  • 45. Aydın K., Katmer Ş., Gök A., Şeker U., Experimental and statistical investigation of the machining performance of wave form end mills on AISI 316L stainless steel, Journal of the Faculty of Engineering and Architecture of Gazi University, 36 (4), 2225-2238, 2021.

Statistical comparison of seru production system and assembly line production system at different labor competence levels

Yıl 2024, , 2125 - 2142, 20.05.2024
https://doi.org/10.17341/gazimmfd.1220997

Öz

The Seru Production System is a cellular production system that originated in Japanese manufacturing industry. Seru Production Systems evaluates the efficiency of assembly line and the flexibility of job-shop production together. Workers must be cross-trained and have advanced competency levels for different operations in Seru Production Systems. In this study, the employees' production rate at different labor competency levels assigned in the Seru Production System is compared with production rate they put forward while working in traditional assembly line production system. This paper examines various competence levels of employees capable of producing the entire product and their effects on total production output. First, traditional assembly line production rates were calculated via integer programming using well-known test problems. Then, these test problems were converted into serus run by workers with different competence levels, relevant operation times were calculated, and production rates were obtained. Paired t test is used to compare the production rates. The results show that Seru Production Systems provided more production than traditional assembly line. Moreover, a 2-way analysis of variance is applied to show that the output rates obtained from the assembly line and traditional production methods are affected by different test problems and different worker competency levels.

Kaynakça

  • 1. Zhang, X., Liu, C., Li, W., Evans, S., Yin, Y., Effects of Key Enabling Technologies for Seru Production on Sustainable Performance, Omega, 66, 290-307, 2017.
  • 2. Liu, C., Lian, J., Yin, Y., Li, W., Seru Seisan‐an Innovation of the Production Management Mode in Japan, Asian Journal of Technology Innovation, 18 (2), 89-113, 2010.
  • 3. Sakazume, Y., Is Japanese Cell Manufacturing a New System?: A Comparative Study between Japanese Cell Manufacturing and Cellular Manufacturing, Special English Issue (Production and Logistics), Journal of Japan Industrial Management Association, 55 (6), 341-349, 2005.
  • 4. Liu, C., Stecke, K. E., Lian, J., Yin, Y., An implementation framework for seru production”. International Transactions in Operational Research, 21 (1), 1-19, 2014.
  • 5. Bilgin Sarı, E., Seru Üretim Sistemi: Japon Hücresel İmalat Sistemi, Ankara: Nobel Akademik Yayıncılık, 2020.
  • 6. Miyake, D.I., The Shift From Belt Conveyor Line to Work-Cell Based Assembly Systems to Cope with Increasing Demand Variation in Japanese Industries”. International Journal of Automotive Technology and Management, 6 (4), 419-439, 2006.
  • 7. Kaku, I., Murase, Y., Yin, Y., A Study on Human-Task-Related Performances in Converting Conveyor Assembly Line to Cellular Manufacturing”. European Journal of Industrial Engineering, 2 (1), 17-34, 2008b.
  • 8. Çalışkan E., İşleyen S.K., Çerçioğlu H., A mixed integer mathematical model for loading problem in seru manufacturing systems and matheuristic solution approach, Journal of the Faculty of Engineering and Architecture of Gazi University, 36 (2), 793-806, 2021.
  • 9. Yin, Y., Kaku, I., Stecke, K.E., The Evolution of Seru Production Systems Throughout Canon, NeilsonJournals Publishing, 2008.
  • 10. Kono, H., Fundamental Principles and Viewpoints of Manufacturing Revolution Activities, IEMS, 5, 48-56, 2006.
  • 11. Liu, C., Lian, J., Yin, Y., Li, W., Seru Seisan‐an Innovation of the Production Management Mode in Japan, Asian Journal of Technology Innovation, 18 (2), 89-113, 2010.
  • 12. Furugi A., Haliloğlu M., A mathematical model for line-seru conversion and scheduling problem in seru production system, Journal of the Faculty of Engineering and Architecture of Gazi University, 37 (3), 1213-1224, 2022.
  • 13. Suzuki, Y., Structure of the Japanese Production System: Elusiveness and Reality, Asian Business & Management, 3 (2), 201-219, 2004.
  • 14. Stecke, K.E., Yin, Y., Kaku, I., Murase, Y., Seru: the Organizational Extension of JIT for a Super-Talent Factory”. International Journal of Strategic Decision Sciences (IJSDS), 3 (1), 106-119, 2012.
  • 15. Yin, Y., Stecke, K.E., Swink, M., Kaku, I., Lessons From Seru Production on Manufacturing Competitively in a High Cost Environment”. Journal of Operations Management, 49, 67-76, 2017.
  • 16. Süer, G.A., Tummaluri, R.R., Multi-Period Operator Assignment Considering Skills, Learning and Forgetting in Labour-Intensive Cells”, International Journal of Production Research, 46 (2), 469–493, 2008.
  • 17. Boysen, N., Fliedner, M., Scholl, A., A Classification of Assembly Line Balancing Problems, European Journal of Operational Research, 183, 2, 674–693, 2007.
  • 18. Suksawat, B., HilraokaI, H., Ihara,T., A New Approach Manufacturing Cell Scheduling based on Skill-Based Manufacturing Integrated to Genetic Algorithm, In Towards Synthesis of Micro-Nano-Systems, 325-326, Springer, London, 2005.
  • 19. Fitzpatrick, E.L., Askin, R.G., Forming Effective Worker Teams with Multi-Functional Skill Requirements, Computers and Industrial Engineering, 48 (3), 593–608, 2005.
  • 20. Kuo, Y., Yang, T., Optimization of mixed-skill multi-line operator allocation problem, Computers & Industrial Engineering, 53 (3), 386-393, 2007.
  • 21. Corominas, A., Pastor, R., Plans, J., Balancing Assembly Line with Skilled and Unskilled Workers, Omega, 36 (6), 1126–1132, 2008.
  • 22. Koltai, T., Formulation of Multi-Level Workforce Skill Constraints in Assembly Line Balancing Models, IFAC Proceedings, 46 (9), 772–777, 2013.
  • 23. Yang, C., Gao, J., Balancing Mixed-Model Assembly Lines Using Adjacent Cross-Training in a Demand Variation Environment, Computers and Operations Research, 65, 139–148, 2016.
  • 24. Kaku, I., Gong, J., Tang, J., Yin, Y., Modeling and Numerical Analysis of Line-Cell Conversion Problems, International Journal of Production Research, 47 (8), 2055–2078, 2009.
  • 25. Liu, C., Yang, N., Li, W., Lian, J., Evans, S., Yin, Y., Training and Assignment of Multiskilled Workers for Implementing Seru Cell Production Systems”, The International Journal of Advanced Manufacturing Technology, 69 (5–8), 937–959, 2013.
  • 26. Yu, Y., Tang, J., Sun, W., Yin, Y. Kaku, I., Reducing Worker(s) by Converting Assembly Line into a Pure Cell System, International Journal of Production Economics, 145 (2), 799–806, 2013.
  • 27. Yu, Y., Wang, S., Tang, J., Kaku, I. Sun, W., Complexity of Line Seru, SpringerPlus, 5 (1), 1–26, 2016.
  • 28. Yu, Y., Sun, W., Tang, J., Wang, J., Line-Hybrid Seru System Conversion: Models, Complexities, Properties, Solutions and Insights, Computers and Industrial Engineering, 103, 282–299, 2017.
  • 29. Abdullah, M., ve Süer, G.A. Consideration of Skills in Assembly Lines and Seru Production Systems, Asian Journal of Management Science and Applications, 4 (2), 99-123, 2019.
  • 30. Süer, G.A., Alhawari, O., Operator assignment decisions in a highly dynamic cellular environment”. In Industrial Engineering: Concepts, Methodologies, Tools, and Applications, 1135-1152, IGI Global, 2013.
  • 31. Khalafallah, S., Egilmez, G., A Stochastic Mixed Integer Linear Programming Approach to Skill-Based Workforce Allocation in SERUs”. In IIE Annual Conference. Proceedings, 1070-1075. Institute of Industrial and Systems Engineers (IISE), 2021.
  • 32. Salveson, M.E., The Assembly Line Balancing Problem”. The Journal of Industrial Engineering, 18-25, 1955.
  • 33. Ignall, E.J., A Review of Assembly Line Balancing, The Journal of Industrial Engineering, 16, 244-254, 1965.
  • 34. Mansoor, E.M., Assembly Line Balancing-A Heuristic Algorithm for Variable Operator Performance Levels”. Journal of Industrial Engineering, 19 (12), 618, 1968.
  • 35. Costa, A.M., Miralles, C., Job Rotation in Assembly Lines Employing Disabled Workers, International Journal of Production Economics, 120, 625-632, 2009.
  • 36. Arau´jo, F.F.B., Costa, A.M., Miralles, C., Two Extensions for the ALWABP: Parallel Stations and Collaborative Approach, International Journal of Production Economics, 140, 483–495, 2012.
  • 37. Moreira, M.C.O., Ritt, M., Costa, A.M., Chaves, A.A., Simple Heuristics for the Assembly Line Worker Assignment and Balancing Problem”, Journal of Heuristics, 18, 505–524, 2012.
  • 38. Ramezanian, R., Ezzatpanah, A., Modeling and Solving Multi-Objective Mixed-Model Assembly Line Balancing and Worker Assignment Problem”, Computers & Industrial Engineering, 8, 74-80, 2015.
  • 39. Ritt, M., Costa, A.M., Miralles, C., The Assembly Line Worker Assignment and Balancing Problem with Stochastic Worker Availability”, International Journal of Production Research, 54, 907-922, 2016.
  • 40. Aksut G., Alakas H.M., Eren T., Karacam H., Model proposal for physically ergonomic risky personnel scheduling problem: An application in textile industry for female employees, Journal of the Faculty of Engineering and Architecture of Gazi University, 38 (1), 245-256, 2023.
  • 41. Kaku, I., Gong, J., Tang, J., Yin, Y., A Mathematical Model for Converting Conveyor Assembly Line to Cellular Manufacturing”. Industrial Engineering and Management Systems, 7 (2), 160-170, 2008.
  • 42. Scholl, A., Benchmark data sets by scholl. Assembly Line Balancing Data Dets & Research Topics, 1993. 43. http://www.assembly-line-balancing.de/ (Erişim Tarihi: 16.05.2022).
  • 44. İç Y.T., Elaldı F., Keçeci B., Uzun G.Ö., Limoncuoğlu N., Aksoy İ., An optimization for milling operation of Kevlar fiber-epoxy composite material using factorial design and goal programming methods, Journal of the Faculty of Engineering and Architecture of Gazi University, 34 (3), 1549-1560, 2019.
  • 45. Aydın K., Katmer Ş., Gök A., Şeker U., Experimental and statistical investigation of the machining performance of wave form end mills on AISI 316L stainless steel, Journal of the Faculty of Engineering and Architecture of Gazi University, 36 (4), 2225-2238, 2021.
Toplam 44 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Emre Bilgin Sarı 0000-0001-5110-1918

Şebnem Demirkol Akyol 0000-0001-6106-388X

Erken Görünüm Tarihi 17 Mayıs 2024
Yayımlanma Tarihi 20 Mayıs 2024
Gönderilme Tarihi 19 Aralık 2022
Kabul Tarihi 30 Aralık 2023
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Bilgin Sarı, E., & Demirkol Akyol, Ş. (2024). Seru üretim sistemi ile montaj hattı üretim sisteminin farklı işgücü yetkinlik seviyelerinde istatistiksel olarak karşılaştırılması. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 39(4), 2125-2142. https://doi.org/10.17341/gazimmfd.1220997
AMA Bilgin Sarı E, Demirkol Akyol Ş. Seru üretim sistemi ile montaj hattı üretim sisteminin farklı işgücü yetkinlik seviyelerinde istatistiksel olarak karşılaştırılması. GUMMFD. Mayıs 2024;39(4):2125-2142. doi:10.17341/gazimmfd.1220997
Chicago Bilgin Sarı, Emre, ve Şebnem Demirkol Akyol. “Seru üretim Sistemi Ile Montaj Hattı üretim Sisteminin Farklı işgücü Yetkinlik Seviyelerinde Istatistiksel Olarak karşılaştırılması”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 39, sy. 4 (Mayıs 2024): 2125-42. https://doi.org/10.17341/gazimmfd.1220997.
EndNote Bilgin Sarı E, Demirkol Akyol Ş (01 Mayıs 2024) Seru üretim sistemi ile montaj hattı üretim sisteminin farklı işgücü yetkinlik seviyelerinde istatistiksel olarak karşılaştırılması. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 39 4 2125–2142.
IEEE E. Bilgin Sarı ve Ş. Demirkol Akyol, “Seru üretim sistemi ile montaj hattı üretim sisteminin farklı işgücü yetkinlik seviyelerinde istatistiksel olarak karşılaştırılması”, GUMMFD, c. 39, sy. 4, ss. 2125–2142, 2024, doi: 10.17341/gazimmfd.1220997.
ISNAD Bilgin Sarı, Emre - Demirkol Akyol, Şebnem. “Seru üretim Sistemi Ile Montaj Hattı üretim Sisteminin Farklı işgücü Yetkinlik Seviyelerinde Istatistiksel Olarak karşılaştırılması”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 39/4 (Mayıs 2024), 2125-2142. https://doi.org/10.17341/gazimmfd.1220997.
JAMA Bilgin Sarı E, Demirkol Akyol Ş. Seru üretim sistemi ile montaj hattı üretim sisteminin farklı işgücü yetkinlik seviyelerinde istatistiksel olarak karşılaştırılması. GUMMFD. 2024;39:2125–2142.
MLA Bilgin Sarı, Emre ve Şebnem Demirkol Akyol. “Seru üretim Sistemi Ile Montaj Hattı üretim Sisteminin Farklı işgücü Yetkinlik Seviyelerinde Istatistiksel Olarak karşılaştırılması”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, c. 39, sy. 4, 2024, ss. 2125-42, doi:10.17341/gazimmfd.1220997.
Vancouver Bilgin Sarı E, Demirkol Akyol Ş. Seru üretim sistemi ile montaj hattı üretim sisteminin farklı işgücü yetkinlik seviyelerinde istatistiksel olarak karşılaştırılması. GUMMFD. 2024;39(4):2125-42.