Araştırma Makalesi
BibTex RIS Kaynak Göster

Kombucha çayı kullanarak yeşil sentez ve kimyasal sol-jel yöntemi ile ZnO nanoparçacıklarının sentezlenmesi ve fotokatalitik aktivitelerinin karşılaştırılması

Yıl 2025, , 43 - 58, 16.08.2024
https://doi.org/10.17341/gazimmfd.1250471

Öz

Bu çalışmada Kombucha çayı (KÇ) kullanılarak yeşil sentez ve kimyasal sol-jel yöntemleri ile çinko oksit nanoparçacıkları sentezlenerek özellikleri incelendi. Kombucha çayı ile çinko oksit nanoparçacıklarının ( ZnO-NP(KÇ) ) en uygun sentez şartlarını belirlemek amacı ile reaksiyon sıcaklığı 25, 40 ve 60 0C ve 1, 2, 3 ve 4 h reaksiyon süresini alınarak deneyler gerçekleştirildi. . İncelenen bu parametrelerde 60 0C sıcaklık ve reaksiyon süresi 3 olarak belirlendi. Karşılaştırma amacı ile kimyasal bir yöntem olan sol-jel yöntemiyle de çinko oksit nanoparçacıkları ( ZnO-NP(SJ) ) 60 0C reaksiyon sıcaklığında ve 3 h reaksiyon süresinde sentezi gerçekleştirildi. Her iki yöntemle kullanılarak hazırlanan ZnO-NP’nin karakterizasyon UV/Vis, FTIR, XRD, SEM teknikleri kullanılarak incelendi. Her iki yöntem kullanılarak sentezlenen ZnO-NP(KÇ) ve ZnO-NP(SJ)”nin ortalama kristalit boyutu sırasıyla 22 nm ve 89 nm Debye Schrerrer denklemi ile belirlendi. Çalışmanın ikinci bölümünde her iki yöntemle hazırlanan ZnO-NP’nin, UV lamba altında ve 180 min sonunda, metilen mavisi (MM) çözeltisinde boya giderimi incelenerek fotokatalitik aktiviteleri karşılaştırıldı. Hazırlanan ZnO-NP(KÇ)’nin %76 ve ZnO-NP(SJ)’nin %67 sulu çözeltiden MM’yi giderdiği belirlendi. Her iki yöntemle de sentezlenen ZnO-NP’i kullanarak MM’nin fotokatalitik bozunma kinetiğinin birinci dereceden reaksiyon kinetiğine uyduğu belirlendi.

Kaynakça

  • 1. Shetti N., Bukkitgar S., Kakarla R.R., Reddy C., Aminabhavi T., ZnO-based nanostructured electrodes for electrochemical sensors and biosensors in biomedical applications. Biosensors & Bioelectronics.141, 1-12, 2019.
  • 2. Kütük N., Boran F., Cetinkaya Gürer S., Reduction of Graphene Oxide using purple cabbage extract and investigation of photocatalytic activity by oxidation, Journal of the Faculty of Engineering and Architecture of Gazi University, 38 (3), 1331-1343, 2023.
  • 3. Agarwal S., Kumar S., Agrawal H., Moinuddin M.G., Kumar M., An efficient hydrogen gas sensor based on hierarchical Ag/ZnO hollow microstructures. Sensors and Actuators B: Chemical, 346,130510,2021.
  • 4. Aktürk Ö., Gün Gök Z., Memik Daş T., Erdemli Ö., Synthesis and characterization of sericin-capped gold nanoparticles. Journal of the Faculty of Engineering and Architecture of Gazi University 33 (2), 675-684.2018.
  • 5. Bharathi D. and Bhuvaneshwari V., Synthesis of zinc oxide nanoparticles (ZnO NPs) using pure bioflavonoid rutin and their biomedical applications: Antibacterial, antioxidant and cytotoxic activities. Research on Chemical Intermediates. 45 (4), 2065-2078, 2019.
  • 6. Ibraheem S.A., Audu E.A., Atabat A.J., Jaafar M.U., Tanimu B.F., Pectin-stabilized silver nanoparticles: synthesis, optical and antimicrobial activity against E. Coli. Inorganic Chemistry Communications, 158, 111500, 2023.
  • 7. Abid N., Khan A.M., Shujait S., Chaudhary K., Ikram M., Synthesis of nanomaterials using various top-down and bottom-up approaches, influencing factors, advantages, and disadvantages: A review. Advances in Colloid and Interface Science, 300, 102597, 2022.
  • 8. Satheshkumar M., Anand B., Muthuvel A., Rajarajan M., Mohana V., Enhanced photocatalytic dye degradation and antibacterial activity of biosynthesized ZnO-NPs using curry leaves extract with coconut water. Nanotechnology for Environmental Engineering, 5 (3), 1-11, 2020.
  • 9. Muthuvel A., Jothibas M., Manoharan C., Synthesis of copper oxide nanoparticles by chemical and biogenic methods: photocatalytic degradation and in vitro antioxidant activity. Nanotechnology for Environmental Engineering, 5 (2), 1-19, 2020.
  • 10. Ansari M.A., Murali M., Prasad D., Alzohairy M.A., Almatroudi A., Cinnamomum verum bark extract mediated green synthesis of ZnO nanoparticles and their antibacterial potentiality. Biomolecules, 10 (2), 336, 2020.
  • 11. Patil S.P., Chaudhari R.Y., Nemade M.S., Azadirachta indica leaves mediated green synthesis of metal oxide nanoparticles: A review. Talanta Open, 5, 100083, 2022.
  • 12. Al-Ghamdi A., Indumathi T., Ranjith Kumar E., Green synthesized zinc oxide nanoparticles: Effect of polyethylene glycol and chitosan on structural, optical and morphological analysis. Ceramics International. 48 (13), 18324-18329, 2022.
  • 13. Muthuvel A., Jothibas M., Manoharan C., Effect of chemically synthesis compared to biosynthesized ZnO-NPs using Solanum nigrum leaf extract and their photocatalytic, antibacterial and in-vitro antioxidant activity. Journal of Environmental Chemical Engineering, 8 (2), 103705, 2020.
  • 14. Thema F.T., Manikandan E., Dhlamini M.S., Maaza M., Green synthesis of ZnO nanoparticles via Agathosma betulina natural extract. Materials Letters, 161, 124-127,2015.
  • 15. Hussein B.Y., Mohammed A.M., Green synthesis of ZnO nanoparticles in grape extract: Their application as anti-cancer and anti-bacterial. Materials Today: Proceedings. 42, A18-A26, 2021.
  • 16. Oluwole O., Fernando W.B., Lumanlan J., Ademuyiwa O., Jayasena V., Role of phenolic acid, tannins, stilbenes, lignans and flavonoids in human health – a review. International Journal of Food Science & Technology, 57 (10), 6326-6335, 2022.
  • 17. Abudureheman B., Yu X., Fang D., ZhangH., Enzymatic Oxidation of Tea Catechins and Its Mechanism. Molecules. 27 (3), 942, 2022.
  • 18. Cardoso R.R., Neto R.O., dos Santos D'Almeida C.T., do Nascimento T.P., Pressete C.G., Kombuchas from green and black teas have different phenolic profile, which impacts their antioxidant capacities, antibacterial and antiproliferative activities. Food Research International, 128, 108782, 2020.
  • 19. Oladoye P.O., Ajiboye T.O., Omotola E.O., Oyewola O.J., Methylene blue dye: Toxicity and potential elimination technology from wastewater. Results in Engineering. 16, 100678, 2022.
  • 20. Hammad T., Salem J., Harrison R., Binding agent affect on the structural and optical properties of ZnO nanoparticles. Reviews on Advanced Materials Science, 22, 2009.
  • 21. Ahmad H., Venugopal K., Rajagopal K., De Britto S., Nandini B., Green Synthesis and Characterization of Zinc Oxide Nanoparticles Using Eucalyptus globules and Their Fungicidal Ability Against Pathogenic Fungi of Apple Orchards. Biomolecules. 10 (3), 425, 2020.
  • 22. Díaz-Hernández A., Gracida J., García-Almendárez B.E., Regalado C., Núñez R., Characterization of Magnetic Nanoparticles Coated with Chitosan: A Potential Approach for Enzyme Immobilization. Journal of Nanomaterials. 2018, 9468574, 2018.
  • 23. Jayappa M.D., Ramaiah C.K., Kumar M.A.P., Suresh D., Prabhu A., Green synthesis of zinc oxide nanoparticles from the leaf, stem and in vitro grown callus of Mussaenda frondosa L.: characterization and their applications. Applied Nanoscience. 10 (8),3057-3074, 2020.
  • 24. Sharma P., Singh R., Sharma R., Mukhiya R., Awasthi K., Palladium-oxide extended gate field effect transistor as pH sensor. Materials Letters: X. 12, 100102,2021.
  • 25. Somvanshi A., Manzoor S., Husain S., Influence of Mn doping on structural, dielectric and optical properties of neodymium orthoferrite. AIP Conference Proceedings. 1953 (1), 030243,2018.
  • 26. Chakraborty T., Chakraborty A., Shukla M., Chattopadhyay T., ZnO–Bentonite nanocomposite: an efficient catalyst for discharge of dyes, phenol and Cr (VI) from water. Journal of Coordination Chemistry. 72 (1), 53-68, 2019.
  • 27. Patel N., S. Munjal, Metal Oxide Nanoparticles and Their Applications: A Report.2021.
  • 28. Silva Neto L. M., Mário C., Oliveira D., Dominguez C., Lins R., UV random laser emission from flexible ZnO-Ag-enriched electrospun cellulose acetate fiber matrix. Scientific Reports. 9, 11765, 2019.
  • 29. Elmorsi T., Elsayed M., Bakr M., Enhancing the Removal of Methylene Blue by a Modified ZnO Nanoparticles, Kinetics and Equilibrium Studies. Canadian Journal of Chemistry. 95 (5), 590-600, 2017.
  • 30. Krupa A.N.D., Vimala R., Evaluation of tetraethoxysilane (TEOS) sol–gel coatings, modified with green synthesized zinc oxide nanoparticles for combating microfouling. Materials Science and Engineering: C. 61, 728-735, 2016.
  • 31. Siripireddy B., Mandal B.K., Facile green synthesis of zinc oxide nanoparticles by Eucalyptus globulus and their photocatalytic and antioxidant activity. Advanced Powder Technology, 28 (3), 785-797, 2017.
  • 32. Sadiq H., Sher F., Sehar S., Lima E.C., Zhang S., Green synthesis of ZnO nanoparticles from Syzygium Cumini leaves extract with robust photocatalysis applications. Journal of Molecular Liquids. 335, 116567, 2021.
  • 33. Aldeen T.S., Ahmed Mohamed H.E., Maaza M., ZnO nanoparticles prepared via a green synthesis approach: Physical properties, photocatalytic and antibacterial activity. Journal of Physics and Chemistry of Solids. 160, 110313 ,2022. 34. Karthik K.V., Raghu A.V., Reddy K.R., Ravishankar R., Sangeeta, M., Green synthesis of Cu-doped ZnO nanoparticles and its application for the photocatalytic degradation of hazardous organic pollutants. Chemosphere. 287, 132081, 2022.
  • 35. Lin X.H., Sriramulu D., Li S.F.Y., Selective removal of photocatalytic non-degradable fluorosurfactants from reverse osmosis concentrate. Water Research. 68, 831-838, 2015.
  • 36. Zhou Y., Liu X., Tang, L., Zhang, F., Zeng G., Insight into highly efficient co-removal of p-nitrophenol and lead by nitrogen-functionalized magnetic ordered mesoporous carbon: performance and modelling. Journal of hazardous materials. 333, 80-87, 2017.
  • 37. Begum S., Ahmaruzzaman M., CTAB and SDS assisted facile fabrication of SnO2 nanoparticles for effective degradation of carbamazepine from aqueous phase: A systematic and comparative study of their degradation performance. Water research. 129, 470-485, 2018.
  • 38. Shao B., Liu, Z., Zeng G., Liu Y., Yang X., Immobilization of laccase on hollow mesoporous carbon nanospheres: noteworthy immobilization, excellent stability and efficacious for antibiotic contaminants removal, Journal of hazardous materials, 362, 318-326, 2019.
  • 39. Cheng M., Lai C., Liu Y., Zeng G, Huang D., Metal-organic frameworks for highly efficient heterogeneous Fenton-like catalysis. Coordination Chemistry Reviews, 368, 80-92, 2018.
  • 40. Liu X., Shu J., Wang H., Jiang Z., Xu, L., One-pot preparation of a novel CoWO4/ZnWO4 p-n heterojunction photocatalyst for enhanced photocatalytic activity under visible light irradiation. Journal of Physics and Chemistry of Solids. 172, 111061, 2023.
  • 41. Argazzi R., Bignozzi C.A., Heimer T.A., Meyer G.J., Remote interfacial electron transfer from supramolecular sensitizers. Inorganic Chemistry. 36 (1), 2-3.1997.
  • 42. Lee K.M., Lai C.W., Ngai K.S., Juan J.C., Recent developments of zinc oxide based photocatalyst in water treatment technology: a review. Water research, 88, 428-448, 2016.
  • 43. Usha Devi T., Ranjith Kumar E., Kumar M., Balraj B., Sivakumar C., Physicochemical properties and photocatalytic activity of MoO3 nanostructures: Evaluation of structural, optical, vibrational, and morphological properties. Ceramics International, 49 (9), 13994-14006, 2023.
  • 44. Dogu D., Karakas G., Methylene blue degradation on praseodymium-doped titanium dioxide photocatalyst, Journal of the Faculty of Engineering and Architecture of Gazi University, 35 (2), 859-869, 2020.
  • 45. Kumaresan N., Ramamurthi K., Babu R.R., Sethuraman K., Babu S.M., Hydrothermally grown ZnO nanoparticles for effective photocatalytic activity. Applied Surface Science, 418, 138-146, 2017.
  • 46. Bakina O., Glazkova E., Rodkevich N., Mosunov A., Chzhou V., Electroexplosive synthesis of composite ZnO/ZnFe2O4/Zn nanoparticles with photocatalytic and antibacterial activity, Materials Science in Semiconductor Processing, 152, 107076, 2022.
  • 47. Yosefi L., Haghighi M., Margan P., Novel flowerlike nanoheterojunction design of p-BiOBr-p-NiO photocatalyst with enhanced photocatalytic activity for degradation of acid orange 7 and methylene blue. Materials Today Sustainability, 19, 100173, 2022.
  • 48. Khor C.M., Khan M.M., Khan M.Y., Khan A., Harunsani M.H., Enhanced photocatalytic activity of La and Zr-codoped AgNbO3 for rhodamine B and methylene blue degradation. Journal of Saudi Chemical Society. 26 (5), 101534, 2022.
  • 49. Yerli-Soylu, N., Akturk A., Kabak Ö., Erol-Taygun M., Karbancioglu-Guler F., TiO2 nanocomposite ceramics doped with silver nanoparticles for the photocatalytic degradation of methylene blue and antibacterial activity against Escherichia coli. Engineering Science and Technology, an International Journal, 35, 101175, 2022.
  • 50. Govindhan P., Pragathiswaran C., Silver Nanoparticle Decorated on ZnO@SiO2 Nanocomposite and Application for Photocatalytic Dye Degradation of Methylene Blue. National Academy Science Letters. 42, 323–326, 2019.
Yıl 2025, , 43 - 58, 16.08.2024
https://doi.org/10.17341/gazimmfd.1250471

Öz

Kaynakça

  • 1. Shetti N., Bukkitgar S., Kakarla R.R., Reddy C., Aminabhavi T., ZnO-based nanostructured electrodes for electrochemical sensors and biosensors in biomedical applications. Biosensors & Bioelectronics.141, 1-12, 2019.
  • 2. Kütük N., Boran F., Cetinkaya Gürer S., Reduction of Graphene Oxide using purple cabbage extract and investigation of photocatalytic activity by oxidation, Journal of the Faculty of Engineering and Architecture of Gazi University, 38 (3), 1331-1343, 2023.
  • 3. Agarwal S., Kumar S., Agrawal H., Moinuddin M.G., Kumar M., An efficient hydrogen gas sensor based on hierarchical Ag/ZnO hollow microstructures. Sensors and Actuators B: Chemical, 346,130510,2021.
  • 4. Aktürk Ö., Gün Gök Z., Memik Daş T., Erdemli Ö., Synthesis and characterization of sericin-capped gold nanoparticles. Journal of the Faculty of Engineering and Architecture of Gazi University 33 (2), 675-684.2018.
  • 5. Bharathi D. and Bhuvaneshwari V., Synthesis of zinc oxide nanoparticles (ZnO NPs) using pure bioflavonoid rutin and their biomedical applications: Antibacterial, antioxidant and cytotoxic activities. Research on Chemical Intermediates. 45 (4), 2065-2078, 2019.
  • 6. Ibraheem S.A., Audu E.A., Atabat A.J., Jaafar M.U., Tanimu B.F., Pectin-stabilized silver nanoparticles: synthesis, optical and antimicrobial activity against E. Coli. Inorganic Chemistry Communications, 158, 111500, 2023.
  • 7. Abid N., Khan A.M., Shujait S., Chaudhary K., Ikram M., Synthesis of nanomaterials using various top-down and bottom-up approaches, influencing factors, advantages, and disadvantages: A review. Advances in Colloid and Interface Science, 300, 102597, 2022.
  • 8. Satheshkumar M., Anand B., Muthuvel A., Rajarajan M., Mohana V., Enhanced photocatalytic dye degradation and antibacterial activity of biosynthesized ZnO-NPs using curry leaves extract with coconut water. Nanotechnology for Environmental Engineering, 5 (3), 1-11, 2020.
  • 9. Muthuvel A., Jothibas M., Manoharan C., Synthesis of copper oxide nanoparticles by chemical and biogenic methods: photocatalytic degradation and in vitro antioxidant activity. Nanotechnology for Environmental Engineering, 5 (2), 1-19, 2020.
  • 10. Ansari M.A., Murali M., Prasad D., Alzohairy M.A., Almatroudi A., Cinnamomum verum bark extract mediated green synthesis of ZnO nanoparticles and their antibacterial potentiality. Biomolecules, 10 (2), 336, 2020.
  • 11. Patil S.P., Chaudhari R.Y., Nemade M.S., Azadirachta indica leaves mediated green synthesis of metal oxide nanoparticles: A review. Talanta Open, 5, 100083, 2022.
  • 12. Al-Ghamdi A., Indumathi T., Ranjith Kumar E., Green synthesized zinc oxide nanoparticles: Effect of polyethylene glycol and chitosan on structural, optical and morphological analysis. Ceramics International. 48 (13), 18324-18329, 2022.
  • 13. Muthuvel A., Jothibas M., Manoharan C., Effect of chemically synthesis compared to biosynthesized ZnO-NPs using Solanum nigrum leaf extract and their photocatalytic, antibacterial and in-vitro antioxidant activity. Journal of Environmental Chemical Engineering, 8 (2), 103705, 2020.
  • 14. Thema F.T., Manikandan E., Dhlamini M.S., Maaza M., Green synthesis of ZnO nanoparticles via Agathosma betulina natural extract. Materials Letters, 161, 124-127,2015.
  • 15. Hussein B.Y., Mohammed A.M., Green synthesis of ZnO nanoparticles in grape extract: Their application as anti-cancer and anti-bacterial. Materials Today: Proceedings. 42, A18-A26, 2021.
  • 16. Oluwole O., Fernando W.B., Lumanlan J., Ademuyiwa O., Jayasena V., Role of phenolic acid, tannins, stilbenes, lignans and flavonoids in human health – a review. International Journal of Food Science & Technology, 57 (10), 6326-6335, 2022.
  • 17. Abudureheman B., Yu X., Fang D., ZhangH., Enzymatic Oxidation of Tea Catechins and Its Mechanism. Molecules. 27 (3), 942, 2022.
  • 18. Cardoso R.R., Neto R.O., dos Santos D'Almeida C.T., do Nascimento T.P., Pressete C.G., Kombuchas from green and black teas have different phenolic profile, which impacts their antioxidant capacities, antibacterial and antiproliferative activities. Food Research International, 128, 108782, 2020.
  • 19. Oladoye P.O., Ajiboye T.O., Omotola E.O., Oyewola O.J., Methylene blue dye: Toxicity and potential elimination technology from wastewater. Results in Engineering. 16, 100678, 2022.
  • 20. Hammad T., Salem J., Harrison R., Binding agent affect on the structural and optical properties of ZnO nanoparticles. Reviews on Advanced Materials Science, 22, 2009.
  • 21. Ahmad H., Venugopal K., Rajagopal K., De Britto S., Nandini B., Green Synthesis and Characterization of Zinc Oxide Nanoparticles Using Eucalyptus globules and Their Fungicidal Ability Against Pathogenic Fungi of Apple Orchards. Biomolecules. 10 (3), 425, 2020.
  • 22. Díaz-Hernández A., Gracida J., García-Almendárez B.E., Regalado C., Núñez R., Characterization of Magnetic Nanoparticles Coated with Chitosan: A Potential Approach for Enzyme Immobilization. Journal of Nanomaterials. 2018, 9468574, 2018.
  • 23. Jayappa M.D., Ramaiah C.K., Kumar M.A.P., Suresh D., Prabhu A., Green synthesis of zinc oxide nanoparticles from the leaf, stem and in vitro grown callus of Mussaenda frondosa L.: characterization and their applications. Applied Nanoscience. 10 (8),3057-3074, 2020.
  • 24. Sharma P., Singh R., Sharma R., Mukhiya R., Awasthi K., Palladium-oxide extended gate field effect transistor as pH sensor. Materials Letters: X. 12, 100102,2021.
  • 25. Somvanshi A., Manzoor S., Husain S., Influence of Mn doping on structural, dielectric and optical properties of neodymium orthoferrite. AIP Conference Proceedings. 1953 (1), 030243,2018.
  • 26. Chakraborty T., Chakraborty A., Shukla M., Chattopadhyay T., ZnO–Bentonite nanocomposite: an efficient catalyst for discharge of dyes, phenol and Cr (VI) from water. Journal of Coordination Chemistry. 72 (1), 53-68, 2019.
  • 27. Patel N., S. Munjal, Metal Oxide Nanoparticles and Their Applications: A Report.2021.
  • 28. Silva Neto L. M., Mário C., Oliveira D., Dominguez C., Lins R., UV random laser emission from flexible ZnO-Ag-enriched electrospun cellulose acetate fiber matrix. Scientific Reports. 9, 11765, 2019.
  • 29. Elmorsi T., Elsayed M., Bakr M., Enhancing the Removal of Methylene Blue by a Modified ZnO Nanoparticles, Kinetics and Equilibrium Studies. Canadian Journal of Chemistry. 95 (5), 590-600, 2017.
  • 30. Krupa A.N.D., Vimala R., Evaluation of tetraethoxysilane (TEOS) sol–gel coatings, modified with green synthesized zinc oxide nanoparticles for combating microfouling. Materials Science and Engineering: C. 61, 728-735, 2016.
  • 31. Siripireddy B., Mandal B.K., Facile green synthesis of zinc oxide nanoparticles by Eucalyptus globulus and their photocatalytic and antioxidant activity. Advanced Powder Technology, 28 (3), 785-797, 2017.
  • 32. Sadiq H., Sher F., Sehar S., Lima E.C., Zhang S., Green synthesis of ZnO nanoparticles from Syzygium Cumini leaves extract with robust photocatalysis applications. Journal of Molecular Liquids. 335, 116567, 2021.
  • 33. Aldeen T.S., Ahmed Mohamed H.E., Maaza M., ZnO nanoparticles prepared via a green synthesis approach: Physical properties, photocatalytic and antibacterial activity. Journal of Physics and Chemistry of Solids. 160, 110313 ,2022. 34. Karthik K.V., Raghu A.V., Reddy K.R., Ravishankar R., Sangeeta, M., Green synthesis of Cu-doped ZnO nanoparticles and its application for the photocatalytic degradation of hazardous organic pollutants. Chemosphere. 287, 132081, 2022.
  • 35. Lin X.H., Sriramulu D., Li S.F.Y., Selective removal of photocatalytic non-degradable fluorosurfactants from reverse osmosis concentrate. Water Research. 68, 831-838, 2015.
  • 36. Zhou Y., Liu X., Tang, L., Zhang, F., Zeng G., Insight into highly efficient co-removal of p-nitrophenol and lead by nitrogen-functionalized magnetic ordered mesoporous carbon: performance and modelling. Journal of hazardous materials. 333, 80-87, 2017.
  • 37. Begum S., Ahmaruzzaman M., CTAB and SDS assisted facile fabrication of SnO2 nanoparticles for effective degradation of carbamazepine from aqueous phase: A systematic and comparative study of their degradation performance. Water research. 129, 470-485, 2018.
  • 38. Shao B., Liu, Z., Zeng G., Liu Y., Yang X., Immobilization of laccase on hollow mesoporous carbon nanospheres: noteworthy immobilization, excellent stability and efficacious for antibiotic contaminants removal, Journal of hazardous materials, 362, 318-326, 2019.
  • 39. Cheng M., Lai C., Liu Y., Zeng G, Huang D., Metal-organic frameworks for highly efficient heterogeneous Fenton-like catalysis. Coordination Chemistry Reviews, 368, 80-92, 2018.
  • 40. Liu X., Shu J., Wang H., Jiang Z., Xu, L., One-pot preparation of a novel CoWO4/ZnWO4 p-n heterojunction photocatalyst for enhanced photocatalytic activity under visible light irradiation. Journal of Physics and Chemistry of Solids. 172, 111061, 2023.
  • 41. Argazzi R., Bignozzi C.A., Heimer T.A., Meyer G.J., Remote interfacial electron transfer from supramolecular sensitizers. Inorganic Chemistry. 36 (1), 2-3.1997.
  • 42. Lee K.M., Lai C.W., Ngai K.S., Juan J.C., Recent developments of zinc oxide based photocatalyst in water treatment technology: a review. Water research, 88, 428-448, 2016.
  • 43. Usha Devi T., Ranjith Kumar E., Kumar M., Balraj B., Sivakumar C., Physicochemical properties and photocatalytic activity of MoO3 nanostructures: Evaluation of structural, optical, vibrational, and morphological properties. Ceramics International, 49 (9), 13994-14006, 2023.
  • 44. Dogu D., Karakas G., Methylene blue degradation on praseodymium-doped titanium dioxide photocatalyst, Journal of the Faculty of Engineering and Architecture of Gazi University, 35 (2), 859-869, 2020.
  • 45. Kumaresan N., Ramamurthi K., Babu R.R., Sethuraman K., Babu S.M., Hydrothermally grown ZnO nanoparticles for effective photocatalytic activity. Applied Surface Science, 418, 138-146, 2017.
  • 46. Bakina O., Glazkova E., Rodkevich N., Mosunov A., Chzhou V., Electroexplosive synthesis of composite ZnO/ZnFe2O4/Zn nanoparticles with photocatalytic and antibacterial activity, Materials Science in Semiconductor Processing, 152, 107076, 2022.
  • 47. Yosefi L., Haghighi M., Margan P., Novel flowerlike nanoheterojunction design of p-BiOBr-p-NiO photocatalyst with enhanced photocatalytic activity for degradation of acid orange 7 and methylene blue. Materials Today Sustainability, 19, 100173, 2022.
  • 48. Khor C.M., Khan M.M., Khan M.Y., Khan A., Harunsani M.H., Enhanced photocatalytic activity of La and Zr-codoped AgNbO3 for rhodamine B and methylene blue degradation. Journal of Saudi Chemical Society. 26 (5), 101534, 2022.
  • 49. Yerli-Soylu, N., Akturk A., Kabak Ö., Erol-Taygun M., Karbancioglu-Guler F., TiO2 nanocomposite ceramics doped with silver nanoparticles for the photocatalytic degradation of methylene blue and antibacterial activity against Escherichia coli. Engineering Science and Technology, an International Journal, 35, 101175, 2022.
  • 50. Govindhan P., Pragathiswaran C., Silver Nanoparticle Decorated on ZnO@SiO2 Nanocomposite and Application for Photocatalytic Dye Degradation of Methylene Blue. National Academy Science Letters. 42, 323–326, 2019.
Toplam 49 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Sevil Cetınkaya Gürer 0000-0001-5421-0474

Zeynep Özserçe Haste 0000-0001-7783-9515

Erken Görünüm Tarihi 17 Mayıs 2024
Yayımlanma Tarihi 16 Ağustos 2024
Gönderilme Tarihi 15 Şubat 2023
Kabul Tarihi 27 Ocak 2024
Yayımlandığı Sayı Yıl 2025

Kaynak Göster

APA Cetınkaya Gürer, S., & Özserçe Haste, Z. (2024). Kombucha çayı kullanarak yeşil sentez ve kimyasal sol-jel yöntemi ile ZnO nanoparçacıklarının sentezlenmesi ve fotokatalitik aktivitelerinin karşılaştırılması. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 40(1), 43-58. https://doi.org/10.17341/gazimmfd.1250471
AMA Cetınkaya Gürer S, Özserçe Haste Z. Kombucha çayı kullanarak yeşil sentez ve kimyasal sol-jel yöntemi ile ZnO nanoparçacıklarının sentezlenmesi ve fotokatalitik aktivitelerinin karşılaştırılması. GUMMFD. Ağustos 2024;40(1):43-58. doi:10.17341/gazimmfd.1250471
Chicago Cetınkaya Gürer, Sevil, ve Zeynep Özserçe Haste. “Kombucha çayı Kullanarak yeşil Sentez Ve Kimyasal Sol-Jel yöntemi Ile ZnO nanoparçacıklarının Sentezlenmesi Ve Fotokatalitik Aktivitelerinin karşılaştırılması”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 40, sy. 1 (Ağustos 2024): 43-58. https://doi.org/10.17341/gazimmfd.1250471.
EndNote Cetınkaya Gürer S, Özserçe Haste Z (01 Ağustos 2024) Kombucha çayı kullanarak yeşil sentez ve kimyasal sol-jel yöntemi ile ZnO nanoparçacıklarının sentezlenmesi ve fotokatalitik aktivitelerinin karşılaştırılması. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 40 1 43–58.
IEEE S. Cetınkaya Gürer ve Z. Özserçe Haste, “Kombucha çayı kullanarak yeşil sentez ve kimyasal sol-jel yöntemi ile ZnO nanoparçacıklarının sentezlenmesi ve fotokatalitik aktivitelerinin karşılaştırılması”, GUMMFD, c. 40, sy. 1, ss. 43–58, 2024, doi: 10.17341/gazimmfd.1250471.
ISNAD Cetınkaya Gürer, Sevil - Özserçe Haste, Zeynep. “Kombucha çayı Kullanarak yeşil Sentez Ve Kimyasal Sol-Jel yöntemi Ile ZnO nanoparçacıklarının Sentezlenmesi Ve Fotokatalitik Aktivitelerinin karşılaştırılması”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 40/1 (Ağustos 2024), 43-58. https://doi.org/10.17341/gazimmfd.1250471.
JAMA Cetınkaya Gürer S, Özserçe Haste Z. Kombucha çayı kullanarak yeşil sentez ve kimyasal sol-jel yöntemi ile ZnO nanoparçacıklarının sentezlenmesi ve fotokatalitik aktivitelerinin karşılaştırılması. GUMMFD. 2024;40:43–58.
MLA Cetınkaya Gürer, Sevil ve Zeynep Özserçe Haste. “Kombucha çayı Kullanarak yeşil Sentez Ve Kimyasal Sol-Jel yöntemi Ile ZnO nanoparçacıklarının Sentezlenmesi Ve Fotokatalitik Aktivitelerinin karşılaştırılması”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, c. 40, sy. 1, 2024, ss. 43-58, doi:10.17341/gazimmfd.1250471.
Vancouver Cetınkaya Gürer S, Özserçe Haste Z. Kombucha çayı kullanarak yeşil sentez ve kimyasal sol-jel yöntemi ile ZnO nanoparçacıklarının sentezlenmesi ve fotokatalitik aktivitelerinin karşılaştırılması. GUMMFD. 2024;40(1):43-58.