Araştırma Makalesi
BibTex RIS Kaynak Göster

Experimental comparison of flow peening GOV and abrasive flow machining AFM processes on Ti-6Al-4V aerospace material

Yıl 2024, , 2271 - 2288, 20.05.2024
https://doi.org/10.17341/gazimmfd.1261067

Öz

Ti-6Al-4V finds place from aerospace applications to medical industry due to its superior mechanical features such as high strength, low density, high temperature strength and excellent corrosion resistance. Despite its wide usage applications such as aircraft turbine blades, aircraft structural components and rocket engines, it is a difficult material to machine, manufacture and surface treatment with traditional methods. Non-traditional finishing and surface treatment methods namely abrasive flow machining (AFM) and shot peening processes are applied to obtain desired surface quality for Ti-6Al-4V and difficult to cut materials. The newly developed flow peening (GOV) process, which has the surface finishing capability of the AFM and the compressive residual stress generation capability of the shot peening process together, has been experimentally compared in Ti-6Al-4V workpieces pre-prepared by wire electric discharge cutting machine. The effects of GOV and AFM process parameters on material surfaces were investigated to evaluate the surface roughness, surface quality, material removal amount and white layer thickness. The best surface roughness value, Ra was obtained 0.92 um and the highest amount of chip removed from the surface was 3.6 mg by GOV process while these values were 0.53 um and 1989.15 mg by AFM. While the GOV process improves the surface quality by removing less amount of chip, the AFM process reaches approximate surface quality by removing excess chip.

Kaynakça

  • 1. Henriques V.A., Titanium production for aerospace applications, Journal of aerospace technology and management, 1 (1), 7-17, 2009.
  • 2. Arif M., Asif M., Ahmed I., Advanced composite material for aerospace application—A review, Int. J. Eng. Manuf. Sci, 7 (2), 393-409, 2017.
  • 3. Smith R., Lewi G., Yates D., Development and application of nickel alloys in aerospace engineering, Aircraft engineering and aerospace technology, 73 (2), 138-147, 2001.
  • 4. Ergene B., Simulation of the production of Inconel 718 and Ti6Al4V biomedical parts with different relative densities by selective laser melting (SLM) method, Journal of the Faculty of Engineering and Architecture of Gazi University, 37 (1), 469-484, 2022.
  • 5. Inagaki I., Takechi T., Shirai Y., Ariyasu N., Application and features of titanium for the aerospace industry, Nippon steel & sumitomo metal technical report, 106 (106), 22-27, 2014.
  • 6. Peters M., Kumpfert J., Ward C.H., Leyens C., Titanium alloys for aerospace applications, Advanced engineering materials, 5 (6), 419-427, 2003.
  • 7. Singh P., Pungotra H., Kalsi N.S., On the characteristics of titanium alloys for the aircraft applications, Materials Today: Proceedings, 4 (8), 8971-8982, 2017.
  • 8. Liu S., Shin Y.C., Additive manufacturing of Ti6Al4V alloy: A review, Materials & Design, 164 (1), 107552, 2019. 9. Narutaki N., Murakoshi A., Motonishi S., Takeyama H., Study on machining of titanium alloys, CIRP Annals, 32 (1), 65-69, 1983.
  • 10. Khatri A., Jahan M.P., Investigating tool wear mechanisms in machining of Ti-6Al-4V in flood coolant, dry and MQL conditions, Procedia Manufacturing, 26, 434-445, 2018.
  • 11. Yi S., Li J., Zhu J., Wang X., Mo J., Ding S., Investigation of machining Ti-6Al-4V with graphene oxide nanofluids: Tool wear, cutting forces and cutting vibration, Journal of Manufacturing Processes, 49 (1), 35-49, 2020.
  • 12. ÇELİK Y.H., KILIÇKAP E., Titanyum alaşımlarından Ti-6Al-4V’nın işlenmesinde karşılaşılan zorluklar: Derleme, Gazi University Journal of Science Part C: Design and Technology, 6 (1), 163-175, 2018.
  • 13. Vasanth S., Muthuramalingam T., Vinothkumar P., Geethapriyan T., Murali G., Performance analysis of process parameters on machining titanium (Ti-6Al-4V) alloy using abrasive water jet machining process, Procedia CIRP, 46, 139-142, 2016.
  • 14. Ergene B., Yalçın B., Investigation on mechanical performances of various cellular structures produced with fused deposition modeling (FDM), Journal of the Faculty of Engineering and Architecture of Gazi University, 38 (1), 201-217, 2023.
  • 15. Eyercioglu O., Gov K., The effect of magnesium content on drilling of Al-Mg-Ti alloy by hole electrical discharge machining process, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 235 (1-2), 125-133, 2021.
  • 16. Prasad A.R., Ramji K., Datta G., An experimental study of wire EDM on Ti-6Al-4V alloy, Procedia materials science, 5 (1), 2567-2576, 2014.
  • 17. Dabade U.A., Karidkar S.S., Analysis of Response Variables in WEDM of Inconel 718 Using Taguchi Technique, Procedia CIRP, 41, 886-891, 2016.
  • 18. Göv K., Soydan O., Eyercioğlu Ö., Improving the surface quality of Ti-6Al-4V alloy produced by electrical discharge machining with abrasive flow machining, Journal of the Faculty of Engineering and Architecture of Gazi University, 35 (3), 1159-1170, 2020.
  • 19. Hasçalık A., Çaydaş U., Electrical discharge machining of titanium alloy (Ti–6Al–4V), Applied surface science, 253 (22), 9007-9016, 2007.
  • 20. Hasçalık A., Çaydaş U., A comparative study of surface integrity of Ti–6Al–4V alloy machined by EDM and AECG, Journal of Materials Processing Technology, 190 (1-3), 173-180, 2007.
  • 21. Çoğun C., Kocabaş B., Özgedİk A., Experimental and theoretical investigation of workpiece surface profiles in electrical discharge machining (EDM) Journal of the Faculty of Engineering and Architecture of Gazi University, 19 (1), 2004.
  • 22. Świercz R., Oniszczuk-Świercz D., Dąbrowski L., Electrical discharge machining of difficult to cut materials, Archive of Mechanical Engineering, 65 (4), 461-476, 2018.
  • 23. Ho K., Newman S., State of the art electrical discharge machining (EDM), International Journal of Machine Tools and Manufacture, 43 (13), 1287-1300, 2003.
  • 24. Gov K., The effects of the dielectric liquid temperature on the hole geometries drilled by electro erosion, The International Journal of Advanced Manufacturing Technology, 92, 1255-1262, 2017.
  • 25. Rao P.S., Ramji K., Satyanarayana B., Experimental Investigation and Optimization of Wire EDM Parameters for Surface Roughness, MRR and White Layer in Machining of Aluminium Alloy, Procedia Materials Science, 5 (1), 2197-2206, 2014.
  • 26. Manjaiah M., Narendranath S., Basavarajappa S., A review on machining of titanium based alloys using EDM and WEDM, Rev. Adv. Mater. Sci, 36 (2), 89-111, 2014.
  • 27. Ekmekci B., Residual stresses and white layer in electric discharge machining (EDM), Applied Surface Science, 253 (23), 9234-9240, 2007.
  • 28. Bayram A., Uǧuz A., Ula M., Effects of microstructure and notches on the mechanical properties of dual-phase steels, Materials characterization, 43 (4), 259-269, 1999.
  • 29. Gov K., Eyercioglu O., Effects of abrasive types on the surface integrity of abrasive-flow-machined surfaces, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 232 (6), 1044-1053, 2018.
  • 30. Liao Y., Huang J., Chen Y., A study to achieve a fine surface finish in Wire-EDM, Journal of materials processing technology, 149 (1-3), 165-171, 2004.
  • 31. Maleki E., Unal O., Kashyzadeh K.R., Bagherifard S., Guagliano M., A systematic study on the effects of shot peening on a mild carbon steel: Microstructure, mechanical properties, and axial fatigue strength of smooth and notched specimens, Applied Surface Science Advances, 4 (1), 100071, 2021.
  • 32. Singh S., Shan H., Kumar P., Experimental studies on mechanism of material removal in abrasive flow machining process, Materials and Manufacturing Processes, 23 (7), 714-718, 2008.
  • 33. SOYDAN O., Kürşad G., EYERCİOĞLU Ö., Surface Finishing of Aerospace Materials, El-Cezeri, 7 (2), 700-709, 2020.
  • 34. Melkote S., Liang S., Özel T., Jawahir I.S., Stephenson D.A., Wang B., 100th Anniversary Issue of the Manufacturing Engineering Division PaperA Review of Advances in Modeling of Conventional Machining Processes: From Merchant to the Present, Journal of Manufacturing Science and Engineering, 144 (11), 2022.
  • 35. Kumar S.S., Hiremath S.S., A Review on Abrasive Flow Machining (AFM), Procedia Technology, 25, 1297-1304, 2016.
  • 36. Rhoades L., Abrasive flow machining: a case study, Journal of Materials Processing Technology, 28 (1), 107-116, 1991.
  • 37. Jain R.K., Jain V.K., Dixit P.M., Modeling of material removal and surface roughness in abrasive flow machining process, International Journal of Machine Tools and Manufacture, 39 (12), 1903-1923, 1999.
  • 38. Dixit N., Sharma V., Kumar P., Research trends in abrasive flow machining: A systematic review, Journal of Manufacturing Processes, 64 (1), 1434-1461, 2021.
  • 39. Li J., Zhu Z., Hu J., Zhou Z., Zhang X., Zhao W., Particle collision-based abrasive flow mechanisms in precision machining, The International Journal of Advanced Manufacturing Technology, 110 (7-8), 1819-1831, 2020.
  • 40. Munhoz M.R., Dias L.G., Breganon R., Ribeiro F.S.F., de Souza Gonçalves J.F., Hashimoto E.M., da Silva Júnior C.E., Analysis of the surface roughness obtained by the abrasive flow machining process using an abrasive paste with oiticica oil, The International Journal of Advanced Manufacturing Technology, 106 (11-12), 5061-5070, 2020.
  • 41. Jain R.K., Jain V.K., Specific energy and temperature determination in abrasive flow machining process, International Journal of Machine Tools and Manufacture, 41 (12), 1689-1704, 2001.
  • 42. Jain V.K., Adsul S.G., Experimental Investigations into Abrasive Flow Machining (AFM), International Journal of Machine Tools and Manufacture, 40 (7), 1003-1021, 2000.
  • 43. Karademir I., Celik M.B., Husem F., Maleki E., Amanov A., Unal O., Effects of constrained groove pressing, severe shot peening and ultrasonic nanocrystal surface modification on microstructure and mechanical behavior of S500MC high strength low alloy automotive steel, Applied Surface Science, 538 (1), 147935, 2021.
  • 44. Maleki E., Farrahi G.H., Reza Kashyzadeh K., Unal O., Gugaliano M., Bagherifard S., Effects of conventional and severe shot peening on residual stress and fatigue strength of steel AISI 1060 and residual stress relaxation due to fatigue loading: Experimental and numerical simulation, Metals and Materials International, 27 (10), 2575-2591, 2021.
  • 45. Iswanto P.T., Malau V., Priyambodo B.H., Wibowo T.N., Amin N. Effect of shot-peening on hardness and pitting corrosion rate on load-bearing implant material AISI 304. in Materials Science Forum. 2017: Trans Tech Publ.
  • 46. Unal O., Optimization of shot peening parameters by response surface methodology, Surface and Coatings Technology, 305, 99-109, 2016.
  • 47. Ortiz A., Tian J., Villegas J., Shaw L., Liaw P., Interrogation of the microstructure and residual stress of a nickel-base alloy subjected to surface severe plastic deformation, Acta Materialia, 56 (3), 413-426, 2008.
  • 48. Unal O., Varol R., Almen intensity effect on microstructure and mechanical properties of low carbon steel subjected to severe shot peening, Applied Surface Science, 290, 40-47, 2014.
  • 49. Maleki E., Unal O., Shot peening process effects on metallurgical and mechanical properties of 316 L steel via: experimental and neural network modeling, Metals and Materials International, 27 (2), 262-276, 2021.
  • 50. Cai D., Nie P., Shan J., Liu W., Yao M., Gao Y., Precipitation and residual stress relaxation kinetics in shot-peened Inconel 718, Journal of Materials Engineering and Performance, 15 (5), 614-617, 2006.
  • 51. Park J.-S., Yildizli K., Demir E., Dawson P.R., Miller M.P., Non-destructive characterization of subsurface residual stress fields and correlation with microstructural conditions in a shot-peened inconel component, Experimental Mechanics, 58, 1389-1406, 2018.
  • 52. Ghorashi M.S., Farrahi G.H., Movahhedy M.R., Effect of severe shot peening on the fatigue life of the laser-cladded Inconel 718 specimens, The International Journal of Advanced Manufacturing Technology, 104 (5-8), 2619-2631, 2019.
  • 53. Karahan B., Ince U., Bilya Püskürtmenin (Shot Peening) Teknik-Teknolojideki Yolculuğu ve Soğuk Dövme Prosesine Adaptasyonu, Derin Ekim, 74, 90, 2015.
  • 54. Göv K., Turkish Patent and Trademark Office, 2018-GE-570594 Flow Peening (GOV) Process. 2018.
  • 55. Göv K., Şahin B., Kalak M., Koca M.S., investigation of material removal rate for inconel 718 as aerospace material by flow peening gov process, in Int. Conf. Mater. Eng. Technol. (TICMET'21), 256, 2021.
  • 56. Göv K., Şahin B., Surface Observation of Inconel 718 Treated By Flow Peening Gov Process, in The International Conference of Materials and Engineering Technology (TICMET'21). 2021.
  • 57. Göv K., Kalak M., Koca M.S., Doğan N.F., investigation of surface roughness for inconel 718 as aerospace material by flow peening (gov) process, in Int. Conf. Mater. Eng. Technol. (TICMET'21), 84-87, 2021.
  • 58. Göv K., Göv İ., Şahİn B., Kalak M., Koca M.S., Doğan A., Application of Flow Peening GOV Process on Inconel From Aerospace Materials, in Int. Conf. Mater. Eng. Technol. (TICMET'21), 266, 2021.
  • 59. Kalak M., Sahin B., Gov I., Dogan A., Gov K., Application of GOV (Flow Peening) Process to Improve Surface Quality of Ti-6Al-4V of Aerospace Material International Journal of Surface Science and Engineering, 2023.
  • 60. Sahin B., Gov I., Kalak M., Koca M.S., Gov K., Surface Treatment of AISI 304 Stainless sSteel by GOV (Flow Peening) Process, Arabian Journal for Science and Engineering, 2023.
  • 61. MatWeb. Titanium Ti-6Al-4V (Grade 5), Annealed Bar. Available from: https://www.matweb.com/search/datasheet.aspx?MatGUID=10d463eb3d3d4ff48fc57e0ad1037434&ckck=1

Akışla dövme GOV ve aşındırıcı macunla işleme AMİ proseslerinin Ti-6Al-4V havacılık malzemesinde deneysel kıyaslanması

Yıl 2024, , 2271 - 2288, 20.05.2024
https://doi.org/10.17341/gazimmfd.1261067

Öz

Ti-6Al-4V malzemesi sahip olduğu yüksek mukavemet, düşük yoğunluk, yüksek sıcaklık mukavemeti ve mükemmel korozyon direnci gibi özelliklerinden dolayı havacılık ve uzay sektöründen medikal sektörüne kadar nitelikli alanlarda yaygın kullanılmaktadır. Uçak türbin kanatçığı, uçak yapısal bileşenleri ve roket motoru gibi geniş kullanım alanına rağmen işlenmesi, üretilmesi ve yüzey iyileştirmesi geleneksel yöntemler ile zor bir malzemedir. Bu ve benzeri işlenmesi zor malzemelerin istenilen yüzey kalitesini elde etmek için aşındırıcı macunla işleme (AMİ) ve bilyeli dövme işlemleri gibi geleneksel olmayan yüzey işleme yöntemleri kullanılmaktadır. AMİ prosesinin yüzey bitirme ve bilyeli dövme işleminin basma yönünde artık gerilme oluşturma kabiliyetlerinin birleştirilmesi ile yeni geliştirilen akışla dövme (GOV) prosesi, elektriksel tel erozyonla kesilerek hazırlanmış Ti-6Al-4V malzemesinde deneysel kıyaslamalı çalışılmıştır. Yüzey pürüzlülüğü, yüzey kalitesi, malzeme kaldırma miktarı ve beyaz katman tabakasının kalınlığını değerlendirmek için GOV ve AMİ işlem parametrelerinin, malzeme yüzeyi üzerindeki etkileri incelenmiştir. GOV prosesinde en iyi yüzey pürüzlülüğü Ra 0,92 um ve malzeme kaldırıma miktarı 3,6 mg olarak, AMİ işleminde ise bu değerler Ra = 0,53 um ve 1989,15 mg olarak elde edilmiştir. GOV işlemi, daha az talaş kaldırarak yüzey kalitesini iyileştirirken, AMİ işlemi çok daha fazla talaş kaldırarak yaklaşık yüzey kalitesine ulaşmaktadır.

Kaynakça

  • 1. Henriques V.A., Titanium production for aerospace applications, Journal of aerospace technology and management, 1 (1), 7-17, 2009.
  • 2. Arif M., Asif M., Ahmed I., Advanced composite material for aerospace application—A review, Int. J. Eng. Manuf. Sci, 7 (2), 393-409, 2017.
  • 3. Smith R., Lewi G., Yates D., Development and application of nickel alloys in aerospace engineering, Aircraft engineering and aerospace technology, 73 (2), 138-147, 2001.
  • 4. Ergene B., Simulation of the production of Inconel 718 and Ti6Al4V biomedical parts with different relative densities by selective laser melting (SLM) method, Journal of the Faculty of Engineering and Architecture of Gazi University, 37 (1), 469-484, 2022.
  • 5. Inagaki I., Takechi T., Shirai Y., Ariyasu N., Application and features of titanium for the aerospace industry, Nippon steel & sumitomo metal technical report, 106 (106), 22-27, 2014.
  • 6. Peters M., Kumpfert J., Ward C.H., Leyens C., Titanium alloys for aerospace applications, Advanced engineering materials, 5 (6), 419-427, 2003.
  • 7. Singh P., Pungotra H., Kalsi N.S., On the characteristics of titanium alloys for the aircraft applications, Materials Today: Proceedings, 4 (8), 8971-8982, 2017.
  • 8. Liu S., Shin Y.C., Additive manufacturing of Ti6Al4V alloy: A review, Materials & Design, 164 (1), 107552, 2019. 9. Narutaki N., Murakoshi A., Motonishi S., Takeyama H., Study on machining of titanium alloys, CIRP Annals, 32 (1), 65-69, 1983.
  • 10. Khatri A., Jahan M.P., Investigating tool wear mechanisms in machining of Ti-6Al-4V in flood coolant, dry and MQL conditions, Procedia Manufacturing, 26, 434-445, 2018.
  • 11. Yi S., Li J., Zhu J., Wang X., Mo J., Ding S., Investigation of machining Ti-6Al-4V with graphene oxide nanofluids: Tool wear, cutting forces and cutting vibration, Journal of Manufacturing Processes, 49 (1), 35-49, 2020.
  • 12. ÇELİK Y.H., KILIÇKAP E., Titanyum alaşımlarından Ti-6Al-4V’nın işlenmesinde karşılaşılan zorluklar: Derleme, Gazi University Journal of Science Part C: Design and Technology, 6 (1), 163-175, 2018.
  • 13. Vasanth S., Muthuramalingam T., Vinothkumar P., Geethapriyan T., Murali G., Performance analysis of process parameters on machining titanium (Ti-6Al-4V) alloy using abrasive water jet machining process, Procedia CIRP, 46, 139-142, 2016.
  • 14. Ergene B., Yalçın B., Investigation on mechanical performances of various cellular structures produced with fused deposition modeling (FDM), Journal of the Faculty of Engineering and Architecture of Gazi University, 38 (1), 201-217, 2023.
  • 15. Eyercioglu O., Gov K., The effect of magnesium content on drilling of Al-Mg-Ti alloy by hole electrical discharge machining process, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 235 (1-2), 125-133, 2021.
  • 16. Prasad A.R., Ramji K., Datta G., An experimental study of wire EDM on Ti-6Al-4V alloy, Procedia materials science, 5 (1), 2567-2576, 2014.
  • 17. Dabade U.A., Karidkar S.S., Analysis of Response Variables in WEDM of Inconel 718 Using Taguchi Technique, Procedia CIRP, 41, 886-891, 2016.
  • 18. Göv K., Soydan O., Eyercioğlu Ö., Improving the surface quality of Ti-6Al-4V alloy produced by electrical discharge machining with abrasive flow machining, Journal of the Faculty of Engineering and Architecture of Gazi University, 35 (3), 1159-1170, 2020.
  • 19. Hasçalık A., Çaydaş U., Electrical discharge machining of titanium alloy (Ti–6Al–4V), Applied surface science, 253 (22), 9007-9016, 2007.
  • 20. Hasçalık A., Çaydaş U., A comparative study of surface integrity of Ti–6Al–4V alloy machined by EDM and AECG, Journal of Materials Processing Technology, 190 (1-3), 173-180, 2007.
  • 21. Çoğun C., Kocabaş B., Özgedİk A., Experimental and theoretical investigation of workpiece surface profiles in electrical discharge machining (EDM) Journal of the Faculty of Engineering and Architecture of Gazi University, 19 (1), 2004.
  • 22. Świercz R., Oniszczuk-Świercz D., Dąbrowski L., Electrical discharge machining of difficult to cut materials, Archive of Mechanical Engineering, 65 (4), 461-476, 2018.
  • 23. Ho K., Newman S., State of the art electrical discharge machining (EDM), International Journal of Machine Tools and Manufacture, 43 (13), 1287-1300, 2003.
  • 24. Gov K., The effects of the dielectric liquid temperature on the hole geometries drilled by electro erosion, The International Journal of Advanced Manufacturing Technology, 92, 1255-1262, 2017.
  • 25. Rao P.S., Ramji K., Satyanarayana B., Experimental Investigation and Optimization of Wire EDM Parameters for Surface Roughness, MRR and White Layer in Machining of Aluminium Alloy, Procedia Materials Science, 5 (1), 2197-2206, 2014.
  • 26. Manjaiah M., Narendranath S., Basavarajappa S., A review on machining of titanium based alloys using EDM and WEDM, Rev. Adv. Mater. Sci, 36 (2), 89-111, 2014.
  • 27. Ekmekci B., Residual stresses and white layer in electric discharge machining (EDM), Applied Surface Science, 253 (23), 9234-9240, 2007.
  • 28. Bayram A., Uǧuz A., Ula M., Effects of microstructure and notches on the mechanical properties of dual-phase steels, Materials characterization, 43 (4), 259-269, 1999.
  • 29. Gov K., Eyercioglu O., Effects of abrasive types on the surface integrity of abrasive-flow-machined surfaces, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 232 (6), 1044-1053, 2018.
  • 30. Liao Y., Huang J., Chen Y., A study to achieve a fine surface finish in Wire-EDM, Journal of materials processing technology, 149 (1-3), 165-171, 2004.
  • 31. Maleki E., Unal O., Kashyzadeh K.R., Bagherifard S., Guagliano M., A systematic study on the effects of shot peening on a mild carbon steel: Microstructure, mechanical properties, and axial fatigue strength of smooth and notched specimens, Applied Surface Science Advances, 4 (1), 100071, 2021.
  • 32. Singh S., Shan H., Kumar P., Experimental studies on mechanism of material removal in abrasive flow machining process, Materials and Manufacturing Processes, 23 (7), 714-718, 2008.
  • 33. SOYDAN O., Kürşad G., EYERCİOĞLU Ö., Surface Finishing of Aerospace Materials, El-Cezeri, 7 (2), 700-709, 2020.
  • 34. Melkote S., Liang S., Özel T., Jawahir I.S., Stephenson D.A., Wang B., 100th Anniversary Issue of the Manufacturing Engineering Division PaperA Review of Advances in Modeling of Conventional Machining Processes: From Merchant to the Present, Journal of Manufacturing Science and Engineering, 144 (11), 2022.
  • 35. Kumar S.S., Hiremath S.S., A Review on Abrasive Flow Machining (AFM), Procedia Technology, 25, 1297-1304, 2016.
  • 36. Rhoades L., Abrasive flow machining: a case study, Journal of Materials Processing Technology, 28 (1), 107-116, 1991.
  • 37. Jain R.K., Jain V.K., Dixit P.M., Modeling of material removal and surface roughness in abrasive flow machining process, International Journal of Machine Tools and Manufacture, 39 (12), 1903-1923, 1999.
  • 38. Dixit N., Sharma V., Kumar P., Research trends in abrasive flow machining: A systematic review, Journal of Manufacturing Processes, 64 (1), 1434-1461, 2021.
  • 39. Li J., Zhu Z., Hu J., Zhou Z., Zhang X., Zhao W., Particle collision-based abrasive flow mechanisms in precision machining, The International Journal of Advanced Manufacturing Technology, 110 (7-8), 1819-1831, 2020.
  • 40. Munhoz M.R., Dias L.G., Breganon R., Ribeiro F.S.F., de Souza Gonçalves J.F., Hashimoto E.M., da Silva Júnior C.E., Analysis of the surface roughness obtained by the abrasive flow machining process using an abrasive paste with oiticica oil, The International Journal of Advanced Manufacturing Technology, 106 (11-12), 5061-5070, 2020.
  • 41. Jain R.K., Jain V.K., Specific energy and temperature determination in abrasive flow machining process, International Journal of Machine Tools and Manufacture, 41 (12), 1689-1704, 2001.
  • 42. Jain V.K., Adsul S.G., Experimental Investigations into Abrasive Flow Machining (AFM), International Journal of Machine Tools and Manufacture, 40 (7), 1003-1021, 2000.
  • 43. Karademir I., Celik M.B., Husem F., Maleki E., Amanov A., Unal O., Effects of constrained groove pressing, severe shot peening and ultrasonic nanocrystal surface modification on microstructure and mechanical behavior of S500MC high strength low alloy automotive steel, Applied Surface Science, 538 (1), 147935, 2021.
  • 44. Maleki E., Farrahi G.H., Reza Kashyzadeh K., Unal O., Gugaliano M., Bagherifard S., Effects of conventional and severe shot peening on residual stress and fatigue strength of steel AISI 1060 and residual stress relaxation due to fatigue loading: Experimental and numerical simulation, Metals and Materials International, 27 (10), 2575-2591, 2021.
  • 45. Iswanto P.T., Malau V., Priyambodo B.H., Wibowo T.N., Amin N. Effect of shot-peening on hardness and pitting corrosion rate on load-bearing implant material AISI 304. in Materials Science Forum. 2017: Trans Tech Publ.
  • 46. Unal O., Optimization of shot peening parameters by response surface methodology, Surface and Coatings Technology, 305, 99-109, 2016.
  • 47. Ortiz A., Tian J., Villegas J., Shaw L., Liaw P., Interrogation of the microstructure and residual stress of a nickel-base alloy subjected to surface severe plastic deformation, Acta Materialia, 56 (3), 413-426, 2008.
  • 48. Unal O., Varol R., Almen intensity effect on microstructure and mechanical properties of low carbon steel subjected to severe shot peening, Applied Surface Science, 290, 40-47, 2014.
  • 49. Maleki E., Unal O., Shot peening process effects on metallurgical and mechanical properties of 316 L steel via: experimental and neural network modeling, Metals and Materials International, 27 (2), 262-276, 2021.
  • 50. Cai D., Nie P., Shan J., Liu W., Yao M., Gao Y., Precipitation and residual stress relaxation kinetics in shot-peened Inconel 718, Journal of Materials Engineering and Performance, 15 (5), 614-617, 2006.
  • 51. Park J.-S., Yildizli K., Demir E., Dawson P.R., Miller M.P., Non-destructive characterization of subsurface residual stress fields and correlation with microstructural conditions in a shot-peened inconel component, Experimental Mechanics, 58, 1389-1406, 2018.
  • 52. Ghorashi M.S., Farrahi G.H., Movahhedy M.R., Effect of severe shot peening on the fatigue life of the laser-cladded Inconel 718 specimens, The International Journal of Advanced Manufacturing Technology, 104 (5-8), 2619-2631, 2019.
  • 53. Karahan B., Ince U., Bilya Püskürtmenin (Shot Peening) Teknik-Teknolojideki Yolculuğu ve Soğuk Dövme Prosesine Adaptasyonu, Derin Ekim, 74, 90, 2015.
  • 54. Göv K., Turkish Patent and Trademark Office, 2018-GE-570594 Flow Peening (GOV) Process. 2018.
  • 55. Göv K., Şahin B., Kalak M., Koca M.S., investigation of material removal rate for inconel 718 as aerospace material by flow peening gov process, in Int. Conf. Mater. Eng. Technol. (TICMET'21), 256, 2021.
  • 56. Göv K., Şahin B., Surface Observation of Inconel 718 Treated By Flow Peening Gov Process, in The International Conference of Materials and Engineering Technology (TICMET'21). 2021.
  • 57. Göv K., Kalak M., Koca M.S., Doğan N.F., investigation of surface roughness for inconel 718 as aerospace material by flow peening (gov) process, in Int. Conf. Mater. Eng. Technol. (TICMET'21), 84-87, 2021.
  • 58. Göv K., Göv İ., Şahİn B., Kalak M., Koca M.S., Doğan A., Application of Flow Peening GOV Process on Inconel From Aerospace Materials, in Int. Conf. Mater. Eng. Technol. (TICMET'21), 266, 2021.
  • 59. Kalak M., Sahin B., Gov I., Dogan A., Gov K., Application of GOV (Flow Peening) Process to Improve Surface Quality of Ti-6Al-4V of Aerospace Material International Journal of Surface Science and Engineering, 2023.
  • 60. Sahin B., Gov I., Kalak M., Koca M.S., Gov K., Surface Treatment of AISI 304 Stainless sSteel by GOV (Flow Peening) Process, Arabian Journal for Science and Engineering, 2023.
  • 61. MatWeb. Titanium Ti-6Al-4V (Grade 5), Annealed Bar. Available from: https://www.matweb.com/search/datasheet.aspx?MatGUID=10d463eb3d3d4ff48fc57e0ad1037434&ckck=1
Toplam 60 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Kürşad Göv 0000-0002-3776-865X

Murat Kalak 0000-0003-1221-0753

Erken Görünüm Tarihi 17 Mayıs 2024
Yayımlanma Tarihi 20 Mayıs 2024
Gönderilme Tarihi 6 Mart 2023
Kabul Tarihi 9 Ekim 2023
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Göv, K., & Kalak, M. (2024). Akışla dövme GOV ve aşındırıcı macunla işleme AMİ proseslerinin Ti-6Al-4V havacılık malzemesinde deneysel kıyaslanması. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 39(4), 2271-2288. https://doi.org/10.17341/gazimmfd.1261067
AMA Göv K, Kalak M. Akışla dövme GOV ve aşındırıcı macunla işleme AMİ proseslerinin Ti-6Al-4V havacılık malzemesinde deneysel kıyaslanması. GUMMFD. Mayıs 2024;39(4):2271-2288. doi:10.17341/gazimmfd.1261067
Chicago Göv, Kürşad, ve Murat Kalak. “Akışla dövme GOV Ve aşındırıcı Macunla işleme AMİ Proseslerinin Ti-6Al-4V havacılık Malzemesinde Deneysel kıyaslanması”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 39, sy. 4 (Mayıs 2024): 2271-88. https://doi.org/10.17341/gazimmfd.1261067.
EndNote Göv K, Kalak M (01 Mayıs 2024) Akışla dövme GOV ve aşındırıcı macunla işleme AMİ proseslerinin Ti-6Al-4V havacılık malzemesinde deneysel kıyaslanması. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 39 4 2271–2288.
IEEE K. Göv ve M. Kalak, “Akışla dövme GOV ve aşındırıcı macunla işleme AMİ proseslerinin Ti-6Al-4V havacılık malzemesinde deneysel kıyaslanması”, GUMMFD, c. 39, sy. 4, ss. 2271–2288, 2024, doi: 10.17341/gazimmfd.1261067.
ISNAD Göv, Kürşad - Kalak, Murat. “Akışla dövme GOV Ve aşındırıcı Macunla işleme AMİ Proseslerinin Ti-6Al-4V havacılık Malzemesinde Deneysel kıyaslanması”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 39/4 (Mayıs 2024), 2271-2288. https://doi.org/10.17341/gazimmfd.1261067.
JAMA Göv K, Kalak M. Akışla dövme GOV ve aşındırıcı macunla işleme AMİ proseslerinin Ti-6Al-4V havacılık malzemesinde deneysel kıyaslanması. GUMMFD. 2024;39:2271–2288.
MLA Göv, Kürşad ve Murat Kalak. “Akışla dövme GOV Ve aşındırıcı Macunla işleme AMİ Proseslerinin Ti-6Al-4V havacılık Malzemesinde Deneysel kıyaslanması”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, c. 39, sy. 4, 2024, ss. 2271-88, doi:10.17341/gazimmfd.1261067.
Vancouver Göv K, Kalak M. Akışla dövme GOV ve aşındırıcı macunla işleme AMİ proseslerinin Ti-6Al-4V havacılık malzemesinde deneysel kıyaslanması. GUMMFD. 2024;39(4):2271-88.