Nötron radyasyondan korunmak için bor katkılı yüzey kaplaması oluşturulması ve karakterizasyonu
Yıl 2024,
, 2383 - 2394, 20.05.2024
Hakan Seval
,
Mustafa Yağımlı
,
Hakan Tozan
Öz
Radyasyon günlük hayat da sıklıkla maruz kaldığımız, iş sağlığı ve güvenliğinde de fiziksel risk etmenlerinden birini oluşturan tehlikedir. Sanayi sektöründe, enerji, araştırma ve tıbbi uygulamalarda iyonlaştırıcı radyasyon kaynakları yaygın olarak kullanılmaktadır. Özellikle bu sektörlerde çalışanlar radyasyona maruz kalmakta ve bunun sonucunda kanser başta olmak üzere birçok sağlık sorunu ile karşılaşmaktadır. Bu çalışma da hegzagonal bor nitrür (h-BN) katkı malzemesinin polivinil bütiral (PVB) ile fizikokimyasal süreçlerle ilave edilerek bor katkılı yüzey kaplama malzemesi geliştirilmiş ve daldırma kaplama yöntemi ile çelik üzerinde biriktirilmiştir. PVB kaplamadaki h-BN miktarının termal nötron radyasyonuna karşı koruyucu etkisi araştırılmıştır. Kaplama malzemelerinin moleküller arasında kovalent olmayan etkileşim sonucunda homojen bir dağılım gösterdiği görülmüştür. Katkı malzemesi h-BN ve oluşturulan kaplamalar XRD ve SEM ile karakterize edilmiştir. Üretilen kaplamaların nötron radyasyonuna karşı zırhlama özelliklerinin tespiti için nötron zayıflama deneyleri gerçekleştirilmiş ve termal nötron soğurma katsayısı (ΣT, makroskopik tesir kesiti) hesaplanmıştır. Tüm kaplamaların farklı oranlarda termal nötron radyasyonu azalttığı görülmüştür. En fazla nötron emilim doz oranı %48,42 olmuştur. Oluşturulan kaplama malzemesinin hem çevre hem insan sağlığı açısından toksik özellikte olmaması ve her yüzeye uygulanabilen zırh malzemesi olması amaçlanmıştır.
Destekleyen Kurum
İstanbul Gedik Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi
Proje Numarası
GDK202207-12
Teşekkür
Gazi Üniversitesi Fen Fakültesi Kimya Bölümü, Bölüm Başkanı Prof. Dr. Ali Dişli, Prof. Dr. Serkan Yavuz ve
Doç. Dr. Hamdi Özkan’a teşekkür ederiz.
Kaynakça
- 1. Bilici İ., Aygün B., Deniz C.U., Öz B., Sayyed M.I., Karabulut A., Fabrication of novel neutron shielding materials: Polypropylene composites containing colemanite, tincal and ulexite, Progress in Nuclear Energy, 141, 103954, 2021.
- 2. Penfold J., Thomas R.K., Neutron reflectivity and small angle neutron scattering: An introduction and perspective on recent progress, Current Opinion in Colloid and Interface Science, 19 (3), 198-206,2014.
- 3. Nambiar, S., Yeow, J. T., Polymer-composite materials for radiation protection. ACS Applied Materials & Interfaces, 4 (11), 5717-5726, 2012.
- 4. Gökoğlan E., Ekinci M., Özgenç E., İlem-özdemir D., Aşıkoğlu M. Radyasyon ve insan sağlığı üzerindeki etkileri, Anadolu Kliniği Tıp Bilimleri Dergisi, 25 (3), 289-294, 2020.
- 5. Kılınçarslan, Ş., Başyiğit, C. & Akkurt, İ., Investigation of heavyweight concrete with barite aggregates for radiation shielding, Journal of the Faculty of Engineering and Architecture of Gazi University, 22 (2), 393-399, 2007.
- 6. Kaewjaeng S., Kothan S., Chaiphaksa W., Chanthima N., Rajaramakrishna R., Kim H. J., Kaewkhao J., High transparency La2O3-CaO-B2O3-SiO2 glass for diagnosis x-rays shielding material application, Radiation Physics and Chemistry, 160, 41-47, 2019.
- 7. Tyagi G., Singhal A., Routroy S., Bhunia D., Lahoti M., Radiation Shielding Concrete with alternate constituents: An approach to address multiple hazards, Journal of Hazardous Materials, 404, 124201, 2021.
- 8. European Commission Directive 2011/65/EU of the European Parliament and of the Council of 8 june 2011 – ROHS Off. J. Eur. Union, 2011.
- 9. Esawii H.A., Salama E., El-ahll L.S., Moustafa M., Saleh H.M., High impact tungsten-doped borosilicate glass composite for gamma and neutron transparent radiation shielding, Progress in Nuclear Energy, 150, 104321, 2022.
- 10. Özcan A., Türkan N., Aksu, M., Gülbiçim H., Kurt E., Monte Carlo simulation of gamma shielding properties of Lanthanum hexaboride (LaB6) and Cerium hexaboride (CeB6) materials synthesized by magnesiothermic reduction, Journal of the Faculty of Engineering and Architecture of Gazi University, 38 (2), 927-936, 2022.
- 11. Malkapur S.M., Ghodke S.S., Sujatha P.N., Singh Y., Shivakumar K.S., Sen M., Narasimhan M.C., Pulgur A.V., Waste-polymer incorporated concrete mixes for neutron and gamma radiation shielding, Progress in Nuclear Energy, 135, 103694, 2021.
- 12. Daungwilailuk T., Yenchai C., Rungjaroenkiti W., Pheinsusom P., Panwisawas C., Pansuk W., Use of barite concrete for radiation shielding against gamma-rays and neutrons, Construction and Building Materials, 326, 126838, 2022.
- 13. Knott J.C., Khakbaz H., Allen J., Wu L., Mole R.A., Baldwin C., Nelson A., Sokolova A., Beirne S., Innis P.C., Frost D.G., Cortie D., Rule K.C., Few-layer hexagonal boron nitride / 3D printable polyurethane composite for neutron radiation shielding applications, Composites Science and Technology, 233, 109876, 2023.
- 14. Lee M.K., Lee J.L., Kim J.W., Lee G.J., Properties of B4C–Pbo– Al(OH)3 epoxy nanocomposite prepared by ultrasonic dispersion approach for high temperature neutron shields, Journal of Nuclear Materials, 445, 63–71. 2014.
- 15. Lakshminarayana, G., Baki, S.O., Kaky, K.M., Sayyed, M.I., Tekin, H.O., Lira, A., Kityk, I.V., Mahdi, M. A., Investigation of structural, thermal properties and shielding parameters for multicomponent borate glasses for gamma and neutron radiation shielding applications. J. Non-Cryst. Solids. 471, 222-237, 2017.
- 16. Yılmaz S.N., Akbay İ.K., Özdemir T., A metal-ceramic-rubber composite for hybrid gamma and neutron radiation shielding, Radiation Physics and Chemistry, 180, 109316, 2021.
- 17. Özdemir T., Akbay I. K., Uzun H., Reyhancan I. A., Neutron shielding of EPDM rubber with boric acid: mechanical, thermal properties and neutron absorption tests. Progress in Nuclear Energy, 89, 102-109, 2016.
- 18. Aygün B., High alloyed new stainless steel shielding material for gamma and fast neutron radiation, Nuclear Engineering and Technology, 52 (3), 647-653, 2020.
- 19. Aygün B., Neutron and gamma radiation shielding Ni based new type super alloys development and production by Monte Carlo Simulation technique, Radiation Physics and Chemistry, 188, 109630, 2021.
- 20. AL-Rajhi M.A., Idriss H., Alaamer A.S., El-Khayatt A.M., Gamma / neutron radiation shielding, structural and physical characteristics of iron slag nanopowder, Applied Radiation and Isotopes, 170, 109606, 2021.
- 21. Saleh A., Shalaby R.M., Abdelhakim N.A., Comprehensive study on structure, mechanical and nuclear shielding properties of lead free Sn–Zn–Bi alloys as a powerful radiation and neutron shielding material, Radiation Physics and Chemistry, 195, 110065, 2022.
- 22. Gökçe H. S., Yalçınkaya Ç., Tuyan M., Optimization of reactive powder concrete by means of barite aggregate for both neutrons and gamma rays. Construction and Building Materials, 189, 470-477, 2018.
- 23. Piotrowski T., Neutron shielding evaluation of concretes and mortars: A review. Construction and Building Materials, 277, 122238, 2021.
- 24. Mehta P. K., Monteiro P. J., Concrete: microstructure, properties, and materials. McGraw-Hill Education, 2014.
- 25. Kontani O., Ichikawa Y., Ishizawa A., Takizawa M., Sato O., Irradiation effects on concrete structure Proceedings in International Symposium on the Ageing Management & Maintenance of Nuclear Power Plants, International Atomic Energy Agency (IAEA), 173-182, 2010.
- 26. Demir F., Budak G., Sahin R., Karabulut A., Oltulu M., Un A., Determination of radiation attenuation coefficients of heavyweight-and normal-weight concretes containing colemanite and barite for 0.663 MeV γ-rays. Annals of Nuclear Energy, 38 (6), 1274-1278, 2011.
- 27. Yarar Y., Bayülken A., Investigation of neutron shielding efficiency and radioactivity of concrete shields containing colemanite. Journal of nuclear materials, 212, 1720-1723, 1994.
- 28. Ergin E.H., Yağımlı M., Tozan H., Yalçın G.E., Arca E., Mathematical modelling of sound transmission loss performances of different coloured surfaces coated with polyurethane-based paint, Transactions of the IMF, 98 (5), 271-276, 2020.
- 29. Chen S., Liu G.S., He H.W., Zhou C.F., Yan X., Zhang J.C., Physical structure induced hydrophobicity analyzed from electrospinning and coating polyvinyl butyral films, Adv. Condens. Matter Phys., 2019, 1-5, 2019.
- 30. Motlatle, A.M., Mofokeng, T.G., Scriba, M.R., Ojijo, V., Ray, S.S., The effect of electrically conducting carbon materials on the conductivity and morphology of poly(vinyl butyral) and chitosan blend composite for application in anti-corrosive coatings, Synthetic Metals, 281, 116914, 2021.
- 31. Wang J., Wang N., Liu M., Ge C., Hou B., Liu G., Sun W., Hu Y., Ning Y., Hexagonal boron nitride/poly(vinyl butyral) composite coatings for corrosion protection of copper, Journal of Materials Science & Technology, 96, 103-112, 2022.
- 32. Coan T., Barroso G.S., Motz G., Bolzána A., Machado R.A.F., Preparation of PMMA/hBN composite coatings for metal surface protection, Materials Research, 16 (6), 1366-1372, 2013.
- 33. Radhakrishnan S., Siju C. R., Mahanta D., Patil, S., Madras G., Conducting polyaniline–nano-TiO2 composites for smart corrosion resistant coatings, Electrochimica Acta, 54 (4), 1249-1254, 2009.
- 34. 241Am-Be Nötron Işınlama Hücresinde Nükleer Veri Ölçümleri, Teknik Rapor, Türkiye Atom Enerjisi Kurumu, 7-11, 39-41,2010.
- 35. Gülümser, T., Radyoterapide fotonötron ölçümü ve zırhlaması, Yüksek Lisans Tezi, Akdeniz Üniversitesi, Sağlık Bilimleri Enstitüsü, Antalya, 2016.
- 36. Chilian, C., Chambon, C., Kennedy, G., Neutron self-shielding with k0-NAA irradiations , Nucl. Instrum and Methods A, 622, 429-432, 2010.
- 37. Yücel H., Ankara Üniversitesi Nükleer Bilimler Enstitüsü 101523-Nötron Aktivasyon Analizi Laboratuvarı Föyü, 2020.
- 38. Keleş S., Ortalama enerjisi 5MeV olan bir nötron spektrumu kullanarak 232Th’nin fisyon ürünlerinin kütle dağılımının belirlenmesi, Yüksek lisans Tezi, Gazi Üniversitesi, Fen Bilimleri Enstitüsü, Ankara, 2003.
- 39. Bhattacharyya, S., Mohanty, D., Kumar, P., Das, S.K., Sahoo, P., Pal, S.K., Chakraborty, S., A corrosion and tribo-failure analysis of Ni-P-Cu coated mild steel (AISI-1040) at varied copper concentration, Engineering Failure Analysis, 146, 107063, 2023.
- 40. Zhang, Y., Ding, Y., Li, Y., Gao, J., Yang, J., Synthesis and characterization of polyvinyl butyral–Al (NO3)3 composite sol used for alumina based fibers, Journal of Sol-Gel Science and Technology, 49, 385-390, 2009.
- 41. Arslan, K., Seval, H. K., Murathan Ö. F., Soysal K., Multiwalled boron nitride microtubes (BNMTs) shielding in thermal neutron absorbing, Radiation Effects and Defects in Solids, 173 (7-8), 555-566, 2018.
- 42. Güngör A., Akbay İ. K., Yaşar D., Özdemir T., Flexible X/Gamma ray shielding composite material of EPDM rubber with bismuth trioxide: mechanical, thermal investigations and attenuation tests, Progress in Nuclear Energy, 106, 262-269, 2018.
- 43. Konefała, A., Orlefb, A., Dybekc, M., Maniakowskib, Z., Polaczek-Grelika, K., Zippera, W., Correlation between radioactivity induced inside the treatment room and the undesirable thermal/resonance neutron radiation produced by linac, Physica Medica, 24, 212-218, 2008.
- 44. International Nuclear Data Committee. IAEA Annual Report for 1997. Atlas of Neutron Capture Cross Sections. https://inis.iaea.org/collection/NCLCollectionStore/_Public/28/060/28060364.pdf. Yayın tarihi Nisan, 1997. Erişim tarihi Ağustos 20, 2023.
- 45. Neutron Capture Cross Sections.A. Güngör, I.K. Akbay, T. Özdemir, EPDM Rubber with hexagonal Boron Nitride: A Thermal Neutron Shielding Composite, Radiation Physics and Chemistry, 165, 108391, 2019.
- 46. Özdemir, T., Güngör, A., Reyhancan, İ.A., Flexible neutron shielding composite material of EPDM rubber with boron trioxide: Mechanical, thermal investigations and neutron shielding tests, Radiation Physics and Chemistry, 131, 7-12, 2017.
- 47. Zhang, P., Li, Y., Wang, W., Gao, Z., Wang, B., The design, fabrication and properties of B4C/Al neutron absorbers, Journal of Nuclear Materials, 437 (1–3), 350-358, 2013.