Derleme
BibTex RIS Kaynak Göster

Yoğuşma konusundaki literatüre genel bakış

Yıl 2025, , 713 - 748, 16.08.2024
https://doi.org/10.17341/gazimmfd.1349776

Öz

Faz değişiminin gerçekleştiği ısıtma ve soğutma sistemlerinde daha fazla ısı geçişinin meydana gelmesi, araştırmacıları bu alanda çalışmaya yönlendirmiştir. Teknolojik gelişmeler ise faz değişiminin; düzlemsel yüzeylerden eğrisel yüzeylere, geniş kanallardan mikro kanallara kadar birçok geometride meydana gelmesi zorunluluğuna yol açmıştır. Bu nedenle bu literatür araştırması kapsamında; pratikte, çeşitli geometrilerde sıklıkla karşılaşılan yoğuşma, kapsamlı bir şekilde incelenmiştir. Literatürdeki hem teorik hem de deneysel araştırmaların incelendiği bu çalışmada; 3 kitap, 1 teknik not, 11 literatür araştırma makalesi ve 119 araştırma makalesi olmak üzere toplam 134 adet kaynak gözden geçirilmiştir. İncelenen kaynaklar arasında, Nusselt’in 1916 yılında yayımladığı yoğuşma alanındaki öncü makalesinden yoğuşmanın mekanizmasının incelendiği temel çalışmalara kadar geniş bir yelpazede çalışmalar yer almaktadır. Bu çalışmalardaki; düzlemsel bir yüzey üzerindeki yoğuşmadan bir kürenin yüzeyindeki yoğuşmaya, dış akışta yoğuşmadan iç akışta yoğuşmaya, su buharının tek başına yoğuşmasından kolayca yoğuşmayan bir gazın varlığında gerçekleşen yoğuşmaya kadar tüm durumlar, oluşturulan bir tablo yardımıyla istatistiksel olarak analiz edilmiş, çeşitli grafikler oluşturulmuş ve yorumlanmıştır. Ayrıca, gözden geçirilen ve 1959 ila 2023 tarih aralığını kapsayan çalışmalarda Nusselt sayısı (Nu) veya ısı taşınım katsayısı (h) için geliştirilmiş toplam 28 adet korelasyon, bu alanda çalışan araştırmacılara yararlı olacağı düşüncesiyle kısıtlamalarıyla birlikte tablo halinde verilmiştir.

Kaynakça

  • 1. Nusselt W., Surface condensation of water vapour, Zeitschrift des Vereins Deutscher Ingenieure 60 (27), 541-546, 1916.
  • 2. Onbaşıoğlu S.U., Soğutucu üretiminde mikro kanal teknolojisine doğru, Termodinamik (Aylık Bilimsel Sektör Dergisi), Yıl:12, Sayı:133, 88-97, 2003.
  • 3. Bilen K., Dar Kanallarda Yoğuşma, Doktora Tezi, İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, İstanbul, 2007.
  • 4. Cavallini A., Censi G., Del Col D., Doretti L., Longo G. A., Rossetto L., Zilio C., Condensation inside and outside smooth and enhanced tubes  a review of recent research, International Journal of Refrigeration, 26 (4), 373-392, 2003.
  • 5. Awad M.M., Dalkiliç A.S., Wongwises S., A critical review on condensation heat transfer in microchannels and minichannels, Journal of Nanotechnology in Engineering and Medicine, 5 (1), 010904, 25, 2014.
  • 6. Kim S-M., Mudawar I., Review of databases and predictive methods for pressure drop in adiabatic, condensing and boiling mini/micro-channel flows, International Journal of Heat and Mass Transfer, 77, 74-97, 2014.
  • 7. Kim S-M., Mudawar I., Review of databases and predictive methods for heat transfer in condensing and boiling mini/micro-channel flows, International Journal of Heat and Mass Transfer, 77, 627-652, 2014.
  • 8. Yun J.H., Jeong J.H., A review of prediction methods for two-phase pressure loss in mini/micro-channels, International Journal of Air-Conditioning and Refrigeration, 24 (1), 1630002, 21, 2016.
  • 9. Kharangate C.R., Mudawar I., Review of computational studies on boiling and condensation, International Journal of Heat and Mass Transfer, 108 (A), 1164-1196, 2017.
  • 10. Rifert V., Sereda V., Gorin V., Heat transfer during film condensation inside plain tubes. Review of experimental research, Heat Mass Transfer, 56, 691-713, 2019.
  • 11. El-Fil B., Kini G., Garimella S., A review of dropwise condensation: Theory, modeling, experiments, and applications, International Journal of Heat and Mass Transfer, 160, 120172, 21, 2020.
  • 12. Keniar K., El Fil B., Garimella S., A critical review of analytical and numerical models of condensation in microchannels, International Journal of Refrigeration, 120, 314-330, 2020.
  • 13. El-Kadi K., Alnaimat F., Sherif S.A., Recent advances in condensation heat transfer in mini and micro channels: A comprehensive review, Applied Thermal Engineering, 197, 117412, 27, 2021.
  • 14. Dorao C.A., Fernandino M., The heat transfer coefficient similarity between binary and single component flow condensation inside plain pipes, International Journal of Heat and Mass Transfer, 186, 122450, 10, 2022.
  • 15. Carey V.P., Liquid-Vapor Phase Change Phenomena, Hemisphere Publishing Corporation, Washington, D.C., 1992.
  • 16. Collier J.G., Convective Boiling and Condensation, McGraw-Hill Inc., Great Britain, 1981,
  • 17. Kakaç S., Boilers, Evaporators, and Condensers, John Wiley & Sons Inc., United States of America, 1991.
  • 18. Rohsenow W.M., Heat transfer and temperature distribution in laminar-film condensation, Journal of Fluids Engineering, 78 (8), 1645-1648, 1956.
  • 19. Rohsenow W.M., Webber J.H., Ling A.T., Effect of vapor velocity on laminar and turbulent-film condensation, Journal of Fluids Engineering, 78 (8), 1637-1644, 1956.
  • 20. Mills A.F., Seban R.A., The condensation coefficient of water, International Journal of Heat and Mass Transfer, 10, 1815-1827, 1967.
  • 21. Marek R., Straub J., Analysis of the evaporation coefficient and the condensation coefficient of water, International Journal of Heat and Mass Transfer, 44, 39-53, 2001.
  • 22. Rohsenow W.M., Film condensation, Applied Mechanics Reviews, 23, 487-496, 1970.
  • 23. Churchill S.W., Laminar film condensation, International Journal of Heat and Mass Transfer, 29, 1219-1226, 1986.
  • 24. Sadasivan P., Lienhard J.H., Sensible heat correction in laminar film boiling and condensation, ASME Journal of Heat and Mass Transfer, 109, 545-547, 1987.
  • 25. Winterton R.H.S., Simple theory for laminar natural convection heat transfer (and film boiling ad film condensation) or where do the Nusselt and Rayleigh numbers come from, International Journal of Mechanical Engineering Education, 30 (1), 1-7, 2002.
  • 26. Vargas J.V.C., Bejan A., Optimisation of film condensation with periodic wall cleaning, International Journal of Thermal Sciences, 38, 113-120, 1999.
  • 27. Beceren K., Kılıç A., Theoretical analysis of two-phase closed thermosyphon, Bulletin of the Technical University of Istanbul, 48, 37-46, 1995.
  • 28. Chen S., Yang Z., Duan Y., Chen Y., Wu D., Simulation of condensation flow in a rectangular microchannel, Chemical Engineering and Processing, 76, 60-69, 2014.
  • 29. Su Q., Xu Y.G., Sheng W.H., Rose J.W., Microchannel condensation: correlations and theory, International Journal of Refrigeration, 32, 1149-1152, 2009.
  • 30. Wang H.S., Rose, J.W., Theory of heat transfer during condensation in microchannels, International Journal of Heat and Mass Transfer, 54, 2525-2534, 2011.
  • 31. Shang D.-Y., Wang B., An extended study on steady-state laminar film condensation of a superheated vapor on an isothermal vertical plate, International Journal of Heat and Mass Transfer, 40 (4), 931-941, 1997.
  • 32. Poots G., Miles R.G., Effects of variable physical properties on laminar film condensation of saturated steam on a vertical flat plate, International Journal of Heat and Mass Transfer, 10, 1677-1692, 1967.
  • 33. Stuhltrager E., Miyara A., Uehara H., Flow dynamics and heat transfer of a condensate film on a vertical wall - II. Flow dynamics and heat transfer, International Journal of Heat and Mass Transfer, 38 (15), 2715-2722, 1995.
  • 34. Stuhltrager E., Naridomi Y., Miyara A., Uehara H., Flow dynamics and heat transfer of a condensate film on a vertical wall - I. Numerical analysis and flow Dynamics, International Journal of Heat and Mass Transfer, 36 (6), 1677-1686, 1993.
  • 35. Chen M.M., An analytical study of laminar film condensation: Part I-Flat plates, ASME Journal of Heat and Mass Transfer, 48-54., 1961.
  • 36. Koh J.C.Y., Sparrow E.M., Hartnett J.P., The two phase boundary layer in laminar film condensation, International Journal of Heat and Mass Transfer, 2, 69-82, 1961.
  • 37. Koh J.C.Y., An integral treatment of two-phase boundary layer in film condensation, ASME Journal of Heat and Mass Transfer, 83 (3), 359-362, 1961.
  • 38. Sparrow E.M., Gregg J.L., A boundary-layer treatment of laminar film condensation, ASME Journal of Heat and Mass Transfer, 81 (1), 13-18, 1959.
  • 39. Yang K.-T., Laminar film condensation on a vertical nonisothermal plate, Journal of Applied Mechanics, 33 (1), 203-205, 1966.
  • 40. Brouwers H.J.H., Film condensation on non-isothermal vertical plates, International Journal of Heat and Mass Transfer, 32 (4), 655-663, 1989.
  • 41. Park S.K., Kim M.H., Yoo K.J., Condensation of pure steam and steam-air mixture with surface wawes of condensate film on a vertical wall, International Journal of Multiphase Flow, 22 (5), 893-908, 1996.
  • 42. Slegers L., Seban R.A., Laminar film condensation of steam containing small concentrations of air, International Journal of Heat and Mass Transfer, 13, 1941-1947, 1970.
  • 43. Denny V.E., Jusionis V.J., Effects of noncondensable gas and forced flow on laminar film condensation, International Journal of Heat and Mass Transfer, 15, 315-326, 1972.
  • 44. Al-Diwany H.K., Rose J.W., Free convection film condensation of steam in the presence of non-condensing gases, International Journal of Heat and Mass Transfer, 16, 1359-1369, 1973.
  • 45. Sparrow E.M., Lin S.H., Condensation heat transfer in the presence of a noncondensable gas, ASME Journal of Heat and Mass Transfer, 86 (3), 430-436, 1964.
  • 46. Minkowycz W.J., Sparrow E.M., Condensation heat transfer in the presence of noncondensables, Interfacial resistance, superheating, variable properties, and diffusion, International Journal of Heat and Mass Transfer, 9, 1125-1144, 1966.
  • 47. Denny V.E., Mills A.F., Nonsimilar solutions for laminar film condensation on a vertical surface, International Journal of Heat and Mass Transfer, 12, 965-979, 1969.
  • 48. Miyara A., Flow dynamics and heat transfer of wavy condensate film, ASME Journal of Heat and Mass Transfer, 123, 492-500, 2001.
  • 49. Marschall E., Lee C.Y., Stability of condensate flow down a vertical wall, International Journal of Heat and Mass Transfer, 16, 41-48, 1973.
  • 50. Ünsal M., Thomas W.C., Linearized stability analysis of film condensation, ASME Journal of Heat Transfer, 100, 629-634, 1978.
  • 51. Ünsal M., Thomas W.C., Nonlinear stability of film condensation, ASME Journal of Heat and Mass Transfer, 102, 483-488, 1980.
  • 52. Al-Nimr M.A., AlKam M.K., Film condensation on a vertical plate imbedded in a porous medium, Applied Energy, 56 (1), 47-57, 1997.
  • 53. Kutateladze S.S., Gogonin I.I., Heat transfer in film condensation of slowly moving vapour, International Journal of Heat and Mass Transfer, 22, 1593-1599, 1979.
  • 54. Xu H., You X.-C., Pop I., Analytical approximation for laminar film condensation of saturated stream on an isothermal vertical plate, Applied Mathematical Modelling, 32 (5), 738-748, 2008.
  • 55. Wang T., Tong L., Cao X., A universal correlation development for film-wise condensation in the presence of non-condensable gases on vertical walls under turbulent free convection, Annals of Nuclear Energy, 187, 109789, 2023.
  • 56. Zhao Y., Diao H., Tian M., Xie L., Ge M., Wang Y., Wang S., Condensation characteristics of air–water vapor mixture on the surface of vertical flat plate, International Journal of Heat and Mass Transfer, 210, 124185, 2023.
  • 57. Chou G.-H., Chen J.-C., A general modeling for heat transfer during reflux condensation inside vertical tubes surrounded by isothermal fluid, International Journal of Heat and Mass Transfer, 42, 2299-2311, 1999.
  • 58. Kim S.J., No H.C., Turbulent film condensation of high pressure steam in a vertical tube, International Journal of Heat and Mass Transfer, 43, 4031-4042, 2000.
  • 59. Sun G., Hewitt G.F., Evaporation and condensation of steam-water in a vertical tube, Nuclear Engineering and Design, 207, 137-145, 2001.
  • 60. Thumm S., Philipp C., Gross U., Film condensation of water in a vertical tube with countercurrent vapour flow, International Journal of Heat and Mass Transfer, 44, 4245-4256, 2001.
  • 61. Pan Y., Condensation characteristics inside a vertical tube considering the presence of mass transfer, vapor velocity and interfacial shear, International Journal of Heat and Mass Transfer, 44, 4475-4482, 2001.
  • 62. No H.C., Park H.S., Non-iterative condensation modeling for steam condensation with non-condensable gas in a vertical tube, International Journal of Heat and Mass Transfer, 45, 845-854, 2002.
  • 63. Park I.S., Choi D.H., Heat and mass transfer analysis for the condensing film flow along a vertical grooved tube, International Journal of Heat and Mass Transfer, 44, 4277-4285, 2001.
  • 64. Du X.-Z., Wang B.-X., Study on transport phenomena for flow film condensation in vertical mini-tube with interfacial waves, International Journal of Heat and Mass Transfer, 46, 2095-2101, 2003.
  • 65. Seban R.A., Hodgson J.A., Laminar film condensation in a tube with upward vapor flow, International Journal of Heat and Mass Transfer, 25 (9), 1291-1300, 1982.
  • 66. Fiedler S., Auracher H., Pressure drop during reflux condensation of R134a in a small diameter tube, Experimental Thermal and Fluid Science, 28, 139-144, 2004.
  • 67. Shah M.M., A general correlation for heat transfer during film condensation inside pipes, International Journal of Heat and Mass Transfer, 22, 547-556, 1979.
  • 68. Wang B.-X., Du X.-Z., Study on laminar film-wise condensation for vapor flow in an inclined small/mini-diameter tube, International Journal of Heat and Mass Transfer, 43, 1859-1868, 2000.
  • 69. Du X.Z., Zhao T.S., Analysis of film condensation heat transfer inside a vertical micro tube with consideration of the meniscus draining effect, International Journal of Heat and Mass Transfer, 46, 4669-4679, 2003.
  • 70. Rufer C.E., Kezios S.P., Analysis of two-phase, one-component stratified flow with condensation, ASME Journal of Heat and Mass Transfer, 88 (3), 265-275, 1966.
  • 71. Soliman M., Schuster J.R., Berenson P.J., A general heat transfer correlation for annular flow condensation, ASME Journal of Heat and Mass Transfer, 90 (2), 267-276, 1968.
  • 72. Jung D., Chae S., Bae D., Oho S., Condensation heat transfer coefficients of flammable refrigerants, International Journal of Refrigeration, 27, 314-317, 2004.
  • 73. Bilen K., Özgüç A.F., Düşey dar kanallarda R134a akışkanının yoğuşmasının deneysel incelenmesi, İTÜ Dergisi/d Mühendislik Serisi, 8 (1), 51-60, 2009.
  • 74. Bohdal T., Charun H., Sikora M., Empirical study of heterogeneous refrigerant condensation in pipe minichannels, International Journal of Refrigeration, 59, 210-223, 2015.
  • 75. Da Riva E., Del Col D., Effect of gravity during condensation of R134a in a circular minichannel, Microgravity Science and Technology, 23, 87-97, 2011.
  • 76. Da Riva E., Del Col D., Garimella S.V., Cavallini A., The importance of turbulence during condensation in a horizontal circular minichannel, International Journal of Heat and Mass Transfer, 55, 3470-3481, 2012.
  • 77. Garimella S., Agarwal A., Killion J.D., Condensation pressure drop in circular microchannels, Heat Transfer Engineering, 26 (3), 28-35, 2005.
  • 78. Ji W., Numata M., He Y., Tao W., Nucleate pool boiling and filmwise condensation heat transfer of R134a on the same horizontal tubes, International Journal of Heat and Mass Transfer, 86, 744-754, 2015.
  • 79. Kuczynski W., Charun H., Bohdal T., Influence of hydrodynamic instability on the heat transfer coefficient during condensation of R134a and R404A refrigerants in pipe mini-channels, International Journal of Heat and Mass Transfer, 55, 1083-1094, 2012.
  • 80. Matkovic M., Cavallini A., Del Col D., Rossetto L., Experimental study on condensation heat transfer inside a single circular minichannel, International Journal of Heat and Mass Transfer, 52, 2311-2323, 2009.
  • 81. Mederic B., Lavieille P., Miscevic M., Heat transfer analysis according to condensation flow structures in a minichannel, Experimental Thermal and Fluid Science, 30, 785-793, 2006.
  • 82. Mitrovic J., Condensation of pure refrigerants R12, R134a and their mixtures on a horizontal tube with capillary structure: An experimental study, Forschung im Ingenieurwesen, 64, 345-359, 1999.
  • 83. Keniar K., Garimella S., Experimental investigation of refrigerant condensation in circular and square micro- and mini- channels, International Journal of Heat and Mass Transfer, 176, 121383 12, 2021.
  • 84. Sikora M., Bohdal T., Heat and flow investigation of NOVEC649 refrigerant condensation in pipe minichannels, Energy, 209, 118447, 9, 2020.
  • 85. Bohdal T., Kruzel M., Refrigerant condensation in vertical pipe minichannels under various heat flux density level, International Journal of Heat and Mass Transfer, 146, 118849, 10, 2020.
  • 86. Wen J., Gu X., Liu Y., Wang S., Li Y., Effect of surface tension, gravity and turbulence on condensation patterns of R1234ze(E) in horizontal mini/macro-channels, International Journal of Heat and Mass Transfer, 125, 153-170, 2018.
  • 87. Patel T., Parekh A., Tailor P., Experimental analysis of condensation heat transfer and frictional pressure drop in a horizontal circular mini channel, Heat Mass Transfer, 56, 1579-1600, 2020.
  • 88. Chen M.M., An Analytical Study of Laminar Film Condensation: Part 2—Single and Multiple Horizontal Tubes, ASME. J. Heat Transfer, 83 (1), 55-60, 1961.
  • 89. Hu H.-P., Mixed convection turbulent film condensation on a sphere, Applied Mathematics and Computation, 170 (2), 1194-1208, 2005.
  • 90. Chang T.-B., Mixed-convection film condensation along outside surface of vertical tube in saturated vapor with forced flow, Applied Thermal Engineering, 28 (5-6), 547-555, 2008.
  • 91. Zhao T.S., Liao Q., Theoretical analysis of film condensation heat transfer inside vertical mini triangular channels, International Journal of Heat and Mass Transfer, 45, 2829-2842, 2002.
  • 92. Narain A., Yu G., Liu Q., Interfacial shear models and their required asymptotic form for annular/stratified film condensation flows in inclined channels and vertical pipes, International Journal of Heat and Mass Transfer, 40 (15), 3559-3575, 1997.
  • 93. Panday P.K., Two-dimensional turbulent film condensation of vapours flowing inside a vertical tube and between parallel plates: A numerical approach, International Journal of Refrigeration, 26, 492-503, 2003.
  • 94. Coleman J.W., Garimella S., Characterization of two-phase flow patterns in small diameter round and rectangular tubes, International Journal of Heat and Mass Transfer, 42, 2869-2881, 1999.
  • 95. Coleman J.W., Garimella S., Two-phase flow regimes in round, square and rectangular tubes during condensation of refrigerant R134a, International Journal of Refrigeration, 26, 117-128, 2003.
  • 96. Yan Y.Y., Lio H.-C., Lin T-F., Condensation heat transfer and pressure drop of refrigerant R134a in a plate heat exchanger, International Journal of Heat and Mass Transfer, 42, 993-1006, 1999.
  • 97. Chen Y., Shi M., Cheng P., Peterson G.P., Condensation in microchannels, Nanoscale and Microscale Thermophysical Engineering, 12 (2), 117-143, 2008.
  • 98. Del Col D., Bortolin S., Cavallini A., Matkovic M., Effect of cross sectional shape during condensation in a single square minichannel, International Journal of Heat and Mass Transfer, 54, 3909-3920, 2011.
  • 99. Del Col D., Bortolato M., Azzolin M., Bortolin S., Effect of inclination during condensation inside a square cross section minichannel, International Journal of Heat and Mass Transfer, 78, 760-777, 2014.
  • 100. Derby M., Lee H.J., Peles Y., Jensen M.K., Condensation heat transfer in square, triangular, and semi-circular mini-channels, International Journal of Heat and Mass Transfer, 55, 187-197, 2012.
  • 101. Ganapathy H., Shooshtari A., Choo K., Dessiatoun S., Alshehhi M., Ohadi M., Volume of fluid-based numerical modeling of condensation heat transfer and fluid flow characteristics in microchannels, International Journal of Heat and Mass Transfer, 65, 62-72, 2013.
  • 102. Gu X., Wen J., Zhang X., Wang C., Wang S., Effect of tube shape on the condensation patterns of R1234ze(E) in horizontal mini-channels, International Journal of Heat and Mass Transfer, 131, 121-139, 2019.
  • 103. Rahman M.M., Kariya K., Miyara A., An experimental study and development of new correlation for condensation heat transfer coefficient of refrigerant inside a multiport minichannel with and without fins, International Journal of Heat and Mass Transfer, 116, 50-60, 2018.
  • 104. Lei Y., Chen Z., Numerical study of condensation heat transfer in curved square and triangle microchannels, Heat Transfer Engineering, 41 (9-10), 768-778, 2020.
  • 105. Peng Z.-R., Zheng Q.-Y. Zhang X.-R., Numerical study of condensation process in semi-circular mini-channels for the printed circuit heat exchanger, Heat Transfer Engineering, 43 (8-10), 785-793, 2022.
  • 106. Li S., Zhao Z., Zhang Y., Xu H., Zeng W., Experimental and numerical analysis of condensation heat transfer and pressure drop of refrigerant R22 in minichannels of a printed circuit heat exchanger, Energies, 13 (24), 6589, 19, 2020.
  • 107. Akers W.W., Deans H.A., Crosser O.K., Condensing heat transfer within horizontal tubes, Chem. Engg. Progress Symposium Series No., 55 (29), 171-176, 1959.
  • 108. Cavallini A., Zecchin R., High velocity condensation of R-11 vapor inside vertical tubes, Heat Transfer, 385-396, 1971.
  • 109. Murphy D.L., Macdonald M.P., Mahvi A.J., Garimella S., Condensation of propane in vertical minichannels, International Journal of Heat and Mass Transfer, 137, 1154-1166, 2019.
  • 110. Bashar M.K., Nakamura K., Kariya K., Miyara A., Condensation heat transfer of R1234yf in a small diameter smooth and microfin tube and development of correlation, International Journal of Refrigeration, 120, 331-339, 2020.
  • 111. Shah M.M., Improved correlation for heat transfer during condensation in mini and macro channels, International Journal of Heat and Mass Transfer, 194, 123069, 2022.
  • 112. Ahn T., Moon J., Kang J., Jeong J.J., Yun B., Steam condensation in the presence of non-condensable gas inside a nearly horizontal tube under separated flow, International Journal of Heat and Mass Transfer, 197, 123351, 2022.
  • 113. Wang P., Li M., Dai B., Wang Q., Ma Y., Dang C., Tian H., Experimental and analytical investigation of CO2/R32 condensation heat transfer in a microchannel, International Journal of Refrigeration, 145, 338-352, 2023.
  • 114. Moser K.W., Webb R.L., Na B., A New Equivalent Reynolds Number Model for Condensation in Smooth Tubes, ASME. J. Heat Transfer, 120 (2), 410-417, 1998.
  • 115. Shin J.S., Kim M.H., An experimental study of condensation heat transfers inside a mini-channel with a new measurement technique, International Journal of Multiphase Flow, 30 (3), 311-325, 2004.
  • 116. Wang H.S., Rose J.W., Film condensation in horizontal microchannels: Effect of channel shape, International Journal of Thermal Sciences, 45 (12), 1205–1212, 2006.
  • 117. Stevanovic V.D., Stanojevic M., Radic D., Jovanovic M., Three-fluid model predictions of pressure changes in condensing vertical tubes, International Journal of Heat and Mass Transfer, 51 (15-16), 3736-3744, 2008.
  • 118. Sarma P.K., Chary S.P., Rao V.D., Condensation on a vertical plate fin of variable thickness, International Journal of Heat and Mass Transfer, 31 (9), 1941-1944, 1988.
  • 119. Chen H.-T., Lan Z., Wang T., Study of conjugate conduction-laminar film condensation for a vertical plate fin, International Journal of Heat and Mass Transfer, 37 (16), 2592-2597, 1994.
  • 120. Chen H.-T., Chang S.-M., Lan Z., Effect of noncondensable gas on laminar film condensation along a vertical plate fin, International Journal of Heat and Fluid Flow, 19, 374-381,1998.
  • 121. Dhir V., Lienhard J., Laminar film condensation on plane and axisymmetric bodies in nonuniform gravity, ASME Journal of Heat and Mass Transfer, 93 (1), 97-100, 1971.
  • 122. Zhang L., Xu B., Shi J., Chen Z., Experimental study on condensation heat transfer of FC-72 in a narrow rectangular channel with ellipse-shape pin fins: Ground and microgravity experiments, International Journal of Heat and Mass Transfer, 141, 1272-1287, 2019.
  • 123. Yang C-Y., Webb R. L., Condensation of R-12 in small hydraulic diameter extruded aluminum tubes with and without micro-fins, International Journal of Heat and Mass Transfer, 39 (4), 791-800, 1996.
  • 124. Yang C-Y., Webb R. L., Friction pressure drop of R-12 in small hydraulic diameter extruded aluminum tubes with and without micro-fins, International Journal of Heat and Mass Transfer, 39 (4), 801-809, 1996.
  • 125. Koyama S., Kuwahara K., Nakashita K., Yamamoto K., An experimental study on condensation of refrigerant R134a in a multi-port extruded tube, International Journal of Refrigeration, 26 (4), 425-432, 2003.
  • 126. Zhao Y., Ohadi M.M., França F.H.R., Experimental heat transfer coefficients of CO2 in a microchannel evaporator, ASHRAE Transactions, Symposia, 533-541, 2003.
  • 127. Illan-Gomez F., Lopez B.A., Garcia C.J.R., Vera G.F., Experimental two-phase heat transfer coefficient and frictional pressure drop inside mini-channel during condensation with R1234yf and R134a, Elsevier Journal of Refrigeration, 51, 12-23, 2014.
  • 128. Jige D., Inoue N., Koyama S., Condensation of refrigerants in a multiport tube with rectangular minichannels, International Journal of Refrigeration, 67, 202-213, 2016.
  • 129. Park J.E., Vakili-Farahani F., Consolini L., Thome J.R., Experimental study on condensation heat transfer in vertical minichannels for new refrigerant R1234ze(E) versus R134a and R236fa, Experimental Thermal and Fluid Science, 35, 442-454, 2011.
  • 130. Sakamatapan K., Kaew-On J., Dalkılıç A.S., Mahian O., Wongwises S., Condensation heat transfer characteristics of R-134a flowing inside the multiport minichannels, International Journal of Heat and Mass Transfer, 64, 976-985, 2013.
  • 131. Wu H.Y., Cheng P., Condensation flow patterns in silicon microchannels, International Journal of Heat and Mass Transfer, 48, 2186-2197, 2005.
  • 132. Singh V., Kukreja R., Sehgal S.S., Condensation heat transfer of R134a and R410A in multiport rectangular microchannels with different aspect ratio, International Journal of Thermal Sciences, 179, 107696, 2022.
  • 133. Sparrow E.M., Siegel R., Transient film condensation, Journal of Applied Mechanics, 26 (1), 120-121, 1959.
  • 134. Chung P.M., Unsteady laminar film condensation on vertical plate, ASME Journal of Heat and Mass Transfer, 85 (1), 63-70, 1963.
  • 135. Trevino C., Mendez F., Transient conjugate condensation process on a vertical plate with finite thermal inertia, International Journal of Heat and Mass Transfer, 39 (11), 2221-2230, 1996.
Toplam 135 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Enerji Üretimi, Dönüşüm ve Depolama (Kimyasal ve Elektiksel hariç)
Bölüm Makaleler
Yazarlar

Kemal Bilen 0000-0003-1775-7977

İsmail Erdoğan 0000-0003-1837-2868

Feridun Özgüç 0009-0004-4512-2017

Erken Görünüm Tarihi 1 Ağustos 2024
Yayımlanma Tarihi 16 Ağustos 2024
Gönderilme Tarihi 25 Ağustos 2023
Kabul Tarihi 19 Mart 2024
Yayımlandığı Sayı Yıl 2025

Kaynak Göster

APA Bilen, K., Erdoğan, İ., & Özgüç, F. (2024). Yoğuşma konusundaki literatüre genel bakış. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 40(1), 713-748. https://doi.org/10.17341/gazimmfd.1349776
AMA Bilen K, Erdoğan İ, Özgüç F. Yoğuşma konusundaki literatüre genel bakış. GUMMFD. Ağustos 2024;40(1):713-748. doi:10.17341/gazimmfd.1349776
Chicago Bilen, Kemal, İsmail Erdoğan, ve Feridun Özgüç. “Yoğuşma Konusundaki literatüre Genel bakış”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 40, sy. 1 (Ağustos 2024): 713-48. https://doi.org/10.17341/gazimmfd.1349776.
EndNote Bilen K, Erdoğan İ, Özgüç F (01 Ağustos 2024) Yoğuşma konusundaki literatüre genel bakış. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 40 1 713–748.
IEEE K. Bilen, İ. Erdoğan, ve F. Özgüç, “Yoğuşma konusundaki literatüre genel bakış”, GUMMFD, c. 40, sy. 1, ss. 713–748, 2024, doi: 10.17341/gazimmfd.1349776.
ISNAD Bilen, Kemal vd. “Yoğuşma Konusundaki literatüre Genel bakış”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 40/1 (Ağustos 2024), 713-748. https://doi.org/10.17341/gazimmfd.1349776.
JAMA Bilen K, Erdoğan İ, Özgüç F. Yoğuşma konusundaki literatüre genel bakış. GUMMFD. 2024;40:713–748.
MLA Bilen, Kemal vd. “Yoğuşma Konusundaki literatüre Genel bakış”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, c. 40, sy. 1, 2024, ss. 713-48, doi:10.17341/gazimmfd.1349776.
Vancouver Bilen K, Erdoğan İ, Özgüç F. Yoğuşma konusundaki literatüre genel bakış. GUMMFD. 2024;40(1):713-48.