Araştırma Makalesi
BibTex RIS Kaynak Göster

Functionalization of cotton fabric with 1,3,7-Trimethylxanthine for UV protection

Yıl 2025, , 615 - 626, 16.08.2024
https://doi.org/10.17341/gazimmfd.1368640

Öz

This study was conducted to investigate the ability of 1,3,7-Trimethylxanthine as an ultraviolet (UV) absorber for the functionalization of cotton fabric. 1,3,7-Trimethylxanthine was applied at different concentrations via the pad-dry-cure method, and the structure of the functionalized cotton fabric was characterized by Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FT-IR), and UV–Visible (UV-Vis) Spectroscopy. The UV protection properties of the fabrics were measured in terms of UV blocking, and ultraviolet protection factor (UPF). The results were compared with those of fabrics coated using commonly used UV absorbers, TiO2, and ZnO. The fabric samples coated with 1,3,7-Trimethylxanthine at concentrations of 5% and 10% had low UV transmittance percentages in the UVB region. In particular, the protection rate of the sample treated with 1,3,7-Trimethylxanthine at a concentration of 10% was recorded as "excellent protection". The findings revealed that 1,3,7-Trimethylxanthine provided a non-toxic alternative to TiO2 and ZnO, and the fabrics functionalized with 1,3,7-Trimethylxanthine could have a potential application in the field of summer wear and outdoor activewear.

Kaynakça

  • 1. Girigoswami K., Toxicity of metal oxide nanoparticles. Cellular and molecular toxicology of nanoparticles, 99-122, 2018.
  • 2. Serpone N., Dondi D., Albini A., Inorganic and organic UV filters: Their role and efficacy in sunscreens and suncare products. Inorganica Chim Acta, 360 (3) 794-802, 2007.
  • 3. Vayalil P.K., Elmets C.A., Katiyar S.K., RETRACTED: Treatment of green tea polyphenols in hydrophilic cream prevents UVB-induced oxidation of lipids and proteins, depletion of antioxidant enzymes and phosphorylation of MAPK proteins in SKH-1 hairless mouse skin. Carcinogenesis, 24 (5), 927-936, 2003.
  • 4. Sasani Ghamsari M., Alamdari S., Han W., Park H.H., Impact of nanostructured thin ZnO film in ultraviolet protection, International Journal of Nanomedicine, 207-216, 2017.
  • 5. Xia L., Lenaghan S.C., Zhang M., Zhang,Z., Li Q., Naturally occurring nanoparticles from English ivy: an alternative to metal-based nanoparticles for UV protection, Journal of Nanobiotechnology, 8, 1-9, 2010.
  • 6. Khan W.A., Wang Z.Y., Athar M., Bickers D.R., Mukhtar H., Inhibition of the skin tumorigenicity of (±)-7β, 8α-dihydroxy-9α, 10α-epoxy-7, 8, 9, 10-tetrahydrobenzo [a] pyrene by tannic acid, green tea polyphenols and quercetin in Sencar mice, Cancer Letters, 42 (1-2), 7-12, 1988.
  • 7. Wang Z.Y., Khan W.A., Bickers D.R., Mukhtar H, Protection against polycyclic aromatic hydrocarbon-induced skin tumor initiation in mice by green tea polyphenols, Carcinogenesis, 10 (2), 411-415, 1989.
  • 8. Wang Z.Y., Agarwal R., Bickers D.R., Mukhtar H., Protection against ultraviolet B radiation-induced photocarcinogenesis in hairless mice by green tea polyphenols. Carcinogenesis, 12 (8), 1527-1530, 1991.
  • 9. Elmets C.A., Singh D., Tubesing K., Matsui M., Katiyar S., Mukhtar H., Cutaneous photoprotection from ultraviolet injury by green tea polyphenols, Journal of the American Academy of Dermatology, 44 (3), 425-432, 2001.
  • 10. Schwarz A., Ständer S., Berneburg M., Böhm M., Kulms D., van Steeg H., Schwarz T., Interleukin-12 suppresses ultraviolet radiation-induced apoptosis by inducing DNA repair, Natural Cell Biology, 4 (1), 26-31, 2002.
  • 11. Morley N., Clifford T., Salter L., Campbell S., Gould D., Curnow A., The green tea polyphenol (−)‐epigallocatechin gallate and green tea can protect human cellular DNA from ultraviolet and visible radiation‐induced damage, Photodermatology, photoimmunology & photomedicine, 21 (1), 15-22, 2005.
  • 12. Meeran S.M., Mantena S.K., Katiyar S.K., Prevention of Ultraviolet Radiation–Induced immunosuppression by (−)-epigallocatechin-3-gallate in mice is mediated through interleukin 12–dependent DNA repair, Clinical Cancer Research, 12 (7), 2272-2280, 2006.
  • 13. Camouse M.M., Domingo D.S., Swain F.R., Conrad E.P., Matsui M.S., Maes D., Baron E.D., Topical application of green and white tea extracts provides protection from solar‐simulated ultraviolet light in human skin, Experimental Dermatology, 18 (6), 522-526, 2009.
  • 14. Katiyar S.K., Vaid M., van Steeg H., Meeran S.M., Green tea polyphenols prevent UV-induced immunosuppression by rapid repair of DNA damage and enhancement of nucleotide excision repair genes, Cancer Prevention Research, 3 (2), 179-189, 2010.
  • 15. De la Roche H.M., Seagrove S., Mehta A., Divekar P., Campbell S., Curnow A., Using natural dietary sources of antioxidants to protect against ultraviolet and visible radiation-induced DNA damage: an investigation of human green tea ingestion, Journal of Photochemistry and Photobiology B: Biology, 101 (2), 169-173, 2010.
  • 16. OyetakinWhite P., Tribout H., Baron E., Protective mechanisms of green tea polyphenols in skin, Oxidative Medicine and Cellular Longevity, 1, 2012.
  • 17. Huang M.T., Xie J.G., Wang Z.Y., Ho C.T., Lou Y.R., Wang C.X., Conney A.H., Effects of tea, decaffeinated tea, and caffeine on UVB light-induced complete carcinogenesis in SKH-1 mice: Demonstration of caffeine as a biologically important constituent of tea, Cancer Research, 57 (13), 2623-2629, 1997.
  • 18. Lu Y.P., Lou Y.R., Lin Y., Shih W.J., Huang M.T., Yang C.S., Conney A.H., Inhibitory effects of orally administered green tea, black tea, and caffeine on skin carcinogenesis in mice previously treated with ultraviolet B light (high-risk mice) relationship to decreased tissue fat, Cancer Research, 61 (13), 5002-5009, 2001.
  • 19. Kawasumi M., Lemos B., Bradner J.E., Thibodeau R., Kim Y. S., Schmidt M., Nghiem P., Protection from UV-induced skin carcinogenesis by genetic inhibition of the ataxia telangiectasia and Rad3-related (ATR) kinase, Proceedings of the National Academy of Sciences, 108 (33), 13716-13721, 2011.
  • 20. Rosado C., Tokunaga V.K., Sauce R., De Oliveira C.A., Sarruf F.D., Parise-Filho R., Baby A.R., Another reason for using caffeine in dermocosmetics: Sunscreen adjuvant, Frontiers in Physiology, 10 (519), 2019.
  • 21. Massella D., Ancona A., Garino N., Cauda V., Guan J., Salaun F., Ferri A., Preparation of bio-functional textiles by surface functionalization of cellulose fabrics with caffeine loaded nanoparticles, IOP Conference Series: Materials Science and Engineering, 460 (1), 012044, 2018.
  • 22. Rubio L., Alonso C., Coderch L., Parra J.L., Martí M., Cebrián J., Valldeperas J., Skin delivery of caffeine contained in biofunctional textiles.” Textile Research Journal, 80 (12), 1214-1221, 2010.
  • 23. Kim S.H., Dyeing characteristics and UV protection property of green tea dyed cotton fabrics-focusing on the effect of chitosan mordanting condition, Fibers and Polymers, 7 (3), 255-261, 2006.
  • 24. Punrattanasin N., Investigation of ultraviolet protection properties of cotton fabric via azoic dyeing with green tea extract.” Advanced Material Research, 331, 279, 2011.
  • 25. Bonet-Aracil M.Á., Díaz-García P., Bou-Belda E., Sebastia N., Montoro A., Rodrigo R., UV protection from cotton fabrics dyed with different tea extracts, Dyes and Pigments, 134, 448-452, 2016.
  • 26. Saini S., Gupta A., Singh N., and Sheikh J., Functionalization of linen fabric using layer by layer treatment with chitosan and green tea extract, Journal of Industrial and Engineering Chemistry, 82, 138, 2020.
  • 27. Koh E., Hong K.H., Preparation and properties of wool fabrics dyed with spent coffee ground extract, Textile Research Journal, 89 (1), 13-19, 2019.
  • 28. Saricam C., Okur N., Göcek İ., Functionalization of electrospun nanofibers by using titanium dioxide and 1, 3, 7-Trimethyl xanthine for developing ultraviolet protection, Journal of Industrial Textiles, 50 (3), 398, 2020.
  • 29. Kathirvelu S., D’souza L., Dhurai B., UV protection finishing of textiles using ZnO nanoparticles, Indian Journal of Fibre & Textile Research, 34 (3), 267-273, 2009.
  • 30. Alebeid O.K., Zhao T., Review on: developing UV protection for cotton fabric, The Journal of the Textile Institute, 108 (12), 2027-2039, 2017.
  • 31. Bashari A., Shakeri M., Shirvan A.R., UV-protective textiles, The impact and prospects of green chemistry for textile technology, Editörler: Islam S.U., Butola B.S., Woodhead Publishing, Duxford, Birleşik Krallık, 327-365, 2018.
  • 32. Kibria G., Repon M. R., Hossain M. F., Islam T., Jalil M. A., Aljabri M. D., Rahman M. M., UV-blocking cotton fabric design for comfortable summer wears: factors, durability and nanomaterials, Cellulose, 29 (14), 7555-7585, 2022.
  • 33. Akaydın M., İkiz Y., Kurban N. S., Pamuklu örme kumaşlarda uv işinlarinin geçirgenliğinin ölçümü ve değerlendirilmesi, Tekstil ve Konfeksiyon, 19 (3), 212-217, 2009.
  • 34. Mahetaji K., Mann G., Marchetti S., Raufdeen F., Singh N., 2016, An interdisciplinary investigation into alcohol, caffeine, and prozac. (Doctoral dissertation, Master Thesis, McMaster University. (Unpublised)), 2016.
  • 35. AS/NZS4399. Sun protective clothing, evaluation and classification. Standard Australian and Standard New Zealand, 1996.
  • 36. Sarkar A.K., Textiles for UV protection, Textiles for protection, Editör: Scott R.A., Woodhead Publishing, Cambridge, İngiltere, 355-377, 2005.
  • 37. Hoffmann K., Laperre J., Avermaete A., Altmeyer P., Gambichler T., Defined UV protection by apparel textiles, Archieves of Dermatology, 137, 1089, 2001.
  • 38. Uğur Ş.S., Sariişik M., Aktaş A.H., Fabrication of ZnO Nanoparticle-Based Thin Films on Cotton Fabrics for Antibacterial Purpose. Süleyman Demirel University Journal of Natural & Applied Sciences 14 (1), 95, 2010.
  • 39. Gunasekaran S., Sankari G., Ponnusamy S., Vibrational spectral investigation on xanthine and its derivatives-theophylline, caffeine and theobromine, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 61 (1), 117, 2005.
  • 40. Peng G.W., Chen S.K., Liu H.S., Infrared absorption spectra and their correlation with the Ti-O bond length variations for TiO2 (Rutile), Na-Titanates, and Na-Titanosilicate (Natisite, Na2TiOSiO4), Applied Spectroscopy, 49, 1646, 1995.
  • 41. Beranek R., Kisch H., Tuning the optical and photoelectrochemical properties of surface-modified TiO2, Photochemical & photobiological sciences, 7, 40, 2008.
  • 42. Jnido G., Ohms G., Viöl W., Deposition of zinc oxide coatings on wood surfaces using the solution precursor plasma spraying process, Coatings, 11 (2), 183, 2021.
  • 43. Belay A., Ture K., Redi M., Asfaw A., Measurement of caffeine in coffee beans with UV/vis spectrometer, Food Chemistry, 108 (1), 310, 2008.
  • 44. Atomssa T., Gholap A.V., Characterization of caffeine and determination of caffeine in tea leaves using UV-visible spectrometer, African Journal of Pure and Applied Chemistry, 5 (1), 1, 2011.
  • 45. Navarra G., Moschetti M., Guarrasi V., Mangione M.R., Militello V., Leone M., Simultaneous determination of caffeine and chlorogenic acids in green coffee by UV/Vis spectroscopy, Journal of Chemistry, 1, 2017.
  • 46. Hamdani H.E., Amane M.E., Preparation, spectral, antimicrobial properties and anticancer molecular docking studies of new metal complexes [M (caffeine) 4] (PF6) 2; M= Fe (II), Co (II), Mn (II), Cd (II), Zn (II), Cu (II), Ni (II). Journal of Molecular Structure, 1184, 262-270, 2019.
  • 47. Zak A.K., Abrishami M.E., Majid W.A., Yousefi R., Hosseini S.M., Effects of annealing temperature on some structural and optical properties of ZnO nanoparticles prepared by a modified sol–gel combustion method. Ceramics International, 37 (1), 393, 2011.
  • 48. Kwon H.J., Lee Y.W., Kim H.S., Zhoh C.K., Park K.W., One-dimensional TiO2 nanostructures with improved UV-blocking properties, Materials Letters, 93, 175-178, 2013.
  • 49. Demirbilek N., Kaya M., Yakuphanoğlu F., Investigation of structural and optical properties of pure ZnO and co-doped ZnO: Al: Mnx (x= 1%, 2%, 3%, 5% at.) semiconductor thin films and electrical properties of produced diodes, Journal of the Faculty of Engineering and Architecture of Gazi University, 38 (1), 163-173, 2023.
  • 50. Yang H., Zhu S., Pan N., Studying the mechanisms of titanium dioxide as ultraviolet‐blocking additive for films and fabrics by an improved scheme, Journal of Applied Polymer Science, 92 (5), 3201, 2004.
  • 51. Yu Q.Z., Shen A.A., Anti-ultraviolet treatment for cotton fabrics by dyeing and finishing in one bath and two steps, Journal of Fiber Bioengineering and Informatics, 1 (1), 65-72, 2008.
  • 52. Sricharussin W., Threepopnatkul P., Neamjan N., Effect of various shapes of zinc oxide nanoparticles on cotton fabric for UV-blocking and anti-bacterial properties, Fibers and Polymers, 12 (8), 1037, 2011.
  • 53. Zhang H., Yang L., Imbuing titanium dioxide into cotton fabric using tetrabutyl titanate by hydrothermal method, Journal of the Textile Institute, 103 (8), 885, 2012.
  • 54. Kathirvelu S., D’souza L., Dhurai B., UV protection finishing of textiles using ZnO nanoparticles, Indian Journal of Fibre and Textile Research, 34, 267, 2009.
  • 55. Dadvar S., Tavanai H., Morshed M., UV-protection properties of electrospun polyacrylonitrile nanofibrous mats embedded with MgO and Al2O3 nanoparticles, Journal of Nanoparticle Research, 13 (10), 5163, 2011.
  • 56. Lee K., Lee S., Multifunctionality of poly (vinyl alcohol) nanofiber webs containing titanium dioxide, Journal of Applied Polymer Science, 124 (5), 4038, 2012.
  • 57. Kim C.H., Kim B.H., Yang K.S., TiO2 nanoparticles loaded on graphene/carbon composite nanofibers by electrospinning for increased photocatalysis, Carbon, 50 (7), 2472, 2012.
  • 58. Broasca G., Borcia G., Dumitrascu N., Vrinceanu N., Characterization of ZnO coated polyester fabrics for UV protection, Applied Surface Science, 279, 272, 2013.

1,3,7-Trimetilksantin ile UV koruyucu fonksiyonel pamuklu kumaşların geliştirilmesi

Yıl 2025, , 615 - 626, 16.08.2024
https://doi.org/10.17341/gazimmfd.1368640

Öz

Bu çalışma, 1,3,7-Trimetilksantinin pamuklu kumaşlara ultraviyole (UV) koruyucu özellik kazandırmasındaki işlevini araştırmak amacıyla gerçekleştirilmiştir. Farklı konsantrasyonlarda 1,3,7-Trimetilksantin, pamuklu kumaşlara emdirme-kurutma-kondenzasyon yöntemiyle uygulanmış ve bu yolla fonksiyonel hale getirilmiş pamuklu kumaşların yapısı Taramalı Elektron Mikroskobu (SEM), Fourier Dönüşümü Kızılötesi Spektroskopisi (FT-IR) ve UV-Görünür (UV-Vis) Spektroskopisi ile incelenmiş, kumaşların UV koruma özellikleri, UV bloklama ve UV koruma faktörü (UPF) ölçülerek değerlendirilmiştir. Elde edilen sonuçlar, yaygın olarak kullanılan UV emiciler olan TiO2 ve ZnO kullanılarak kaplanan kumaşlarla karşılaştırılmıştır. %5’lik ve %10’luk konsantrasyonlardaki 1,3,7-Trimetilksantin ile kaplanan kumaş numunelerinin UVB bölgesinde düşük UV geçirgenlik yüzdelerine sahip olduğu, özellikle %10’luk konsantrasyonda 1,3,7-Trimetilksantin ile muamele edilen numunenin “mükemmel koruma” seviyesine sahip olduğu gözlenmiştir. Bulgular, 1,3,7-Trimetilksantinin, TiO2 ve ZnO'ya toksik olmayan bir alternatif sağladığını ve 1,3,7-Trimetilksantin ile fonksiyonel hale getirilen kumaşların yazlık giyim ve dış mekân spor giyim alanında potansiyel bir uygulamaya sahip olabileceğini ortaya çıkarmıştır.

Kaynakça

  • 1. Girigoswami K., Toxicity of metal oxide nanoparticles. Cellular and molecular toxicology of nanoparticles, 99-122, 2018.
  • 2. Serpone N., Dondi D., Albini A., Inorganic and organic UV filters: Their role and efficacy in sunscreens and suncare products. Inorganica Chim Acta, 360 (3) 794-802, 2007.
  • 3. Vayalil P.K., Elmets C.A., Katiyar S.K., RETRACTED: Treatment of green tea polyphenols in hydrophilic cream prevents UVB-induced oxidation of lipids and proteins, depletion of antioxidant enzymes and phosphorylation of MAPK proteins in SKH-1 hairless mouse skin. Carcinogenesis, 24 (5), 927-936, 2003.
  • 4. Sasani Ghamsari M., Alamdari S., Han W., Park H.H., Impact of nanostructured thin ZnO film in ultraviolet protection, International Journal of Nanomedicine, 207-216, 2017.
  • 5. Xia L., Lenaghan S.C., Zhang M., Zhang,Z., Li Q., Naturally occurring nanoparticles from English ivy: an alternative to metal-based nanoparticles for UV protection, Journal of Nanobiotechnology, 8, 1-9, 2010.
  • 6. Khan W.A., Wang Z.Y., Athar M., Bickers D.R., Mukhtar H., Inhibition of the skin tumorigenicity of (±)-7β, 8α-dihydroxy-9α, 10α-epoxy-7, 8, 9, 10-tetrahydrobenzo [a] pyrene by tannic acid, green tea polyphenols and quercetin in Sencar mice, Cancer Letters, 42 (1-2), 7-12, 1988.
  • 7. Wang Z.Y., Khan W.A., Bickers D.R., Mukhtar H, Protection against polycyclic aromatic hydrocarbon-induced skin tumor initiation in mice by green tea polyphenols, Carcinogenesis, 10 (2), 411-415, 1989.
  • 8. Wang Z.Y., Agarwal R., Bickers D.R., Mukhtar H., Protection against ultraviolet B radiation-induced photocarcinogenesis in hairless mice by green tea polyphenols. Carcinogenesis, 12 (8), 1527-1530, 1991.
  • 9. Elmets C.A., Singh D., Tubesing K., Matsui M., Katiyar S., Mukhtar H., Cutaneous photoprotection from ultraviolet injury by green tea polyphenols, Journal of the American Academy of Dermatology, 44 (3), 425-432, 2001.
  • 10. Schwarz A., Ständer S., Berneburg M., Böhm M., Kulms D., van Steeg H., Schwarz T., Interleukin-12 suppresses ultraviolet radiation-induced apoptosis by inducing DNA repair, Natural Cell Biology, 4 (1), 26-31, 2002.
  • 11. Morley N., Clifford T., Salter L., Campbell S., Gould D., Curnow A., The green tea polyphenol (−)‐epigallocatechin gallate and green tea can protect human cellular DNA from ultraviolet and visible radiation‐induced damage, Photodermatology, photoimmunology & photomedicine, 21 (1), 15-22, 2005.
  • 12. Meeran S.M., Mantena S.K., Katiyar S.K., Prevention of Ultraviolet Radiation–Induced immunosuppression by (−)-epigallocatechin-3-gallate in mice is mediated through interleukin 12–dependent DNA repair, Clinical Cancer Research, 12 (7), 2272-2280, 2006.
  • 13. Camouse M.M., Domingo D.S., Swain F.R., Conrad E.P., Matsui M.S., Maes D., Baron E.D., Topical application of green and white tea extracts provides protection from solar‐simulated ultraviolet light in human skin, Experimental Dermatology, 18 (6), 522-526, 2009.
  • 14. Katiyar S.K., Vaid M., van Steeg H., Meeran S.M., Green tea polyphenols prevent UV-induced immunosuppression by rapid repair of DNA damage and enhancement of nucleotide excision repair genes, Cancer Prevention Research, 3 (2), 179-189, 2010.
  • 15. De la Roche H.M., Seagrove S., Mehta A., Divekar P., Campbell S., Curnow A., Using natural dietary sources of antioxidants to protect against ultraviolet and visible radiation-induced DNA damage: an investigation of human green tea ingestion, Journal of Photochemistry and Photobiology B: Biology, 101 (2), 169-173, 2010.
  • 16. OyetakinWhite P., Tribout H., Baron E., Protective mechanisms of green tea polyphenols in skin, Oxidative Medicine and Cellular Longevity, 1, 2012.
  • 17. Huang M.T., Xie J.G., Wang Z.Y., Ho C.T., Lou Y.R., Wang C.X., Conney A.H., Effects of tea, decaffeinated tea, and caffeine on UVB light-induced complete carcinogenesis in SKH-1 mice: Demonstration of caffeine as a biologically important constituent of tea, Cancer Research, 57 (13), 2623-2629, 1997.
  • 18. Lu Y.P., Lou Y.R., Lin Y., Shih W.J., Huang M.T., Yang C.S., Conney A.H., Inhibitory effects of orally administered green tea, black tea, and caffeine on skin carcinogenesis in mice previously treated with ultraviolet B light (high-risk mice) relationship to decreased tissue fat, Cancer Research, 61 (13), 5002-5009, 2001.
  • 19. Kawasumi M., Lemos B., Bradner J.E., Thibodeau R., Kim Y. S., Schmidt M., Nghiem P., Protection from UV-induced skin carcinogenesis by genetic inhibition of the ataxia telangiectasia and Rad3-related (ATR) kinase, Proceedings of the National Academy of Sciences, 108 (33), 13716-13721, 2011.
  • 20. Rosado C., Tokunaga V.K., Sauce R., De Oliveira C.A., Sarruf F.D., Parise-Filho R., Baby A.R., Another reason for using caffeine in dermocosmetics: Sunscreen adjuvant, Frontiers in Physiology, 10 (519), 2019.
  • 21. Massella D., Ancona A., Garino N., Cauda V., Guan J., Salaun F., Ferri A., Preparation of bio-functional textiles by surface functionalization of cellulose fabrics with caffeine loaded nanoparticles, IOP Conference Series: Materials Science and Engineering, 460 (1), 012044, 2018.
  • 22. Rubio L., Alonso C., Coderch L., Parra J.L., Martí M., Cebrián J., Valldeperas J., Skin delivery of caffeine contained in biofunctional textiles.” Textile Research Journal, 80 (12), 1214-1221, 2010.
  • 23. Kim S.H., Dyeing characteristics and UV protection property of green tea dyed cotton fabrics-focusing on the effect of chitosan mordanting condition, Fibers and Polymers, 7 (3), 255-261, 2006.
  • 24. Punrattanasin N., Investigation of ultraviolet protection properties of cotton fabric via azoic dyeing with green tea extract.” Advanced Material Research, 331, 279, 2011.
  • 25. Bonet-Aracil M.Á., Díaz-García P., Bou-Belda E., Sebastia N., Montoro A., Rodrigo R., UV protection from cotton fabrics dyed with different tea extracts, Dyes and Pigments, 134, 448-452, 2016.
  • 26. Saini S., Gupta A., Singh N., and Sheikh J., Functionalization of linen fabric using layer by layer treatment with chitosan and green tea extract, Journal of Industrial and Engineering Chemistry, 82, 138, 2020.
  • 27. Koh E., Hong K.H., Preparation and properties of wool fabrics dyed with spent coffee ground extract, Textile Research Journal, 89 (1), 13-19, 2019.
  • 28. Saricam C., Okur N., Göcek İ., Functionalization of electrospun nanofibers by using titanium dioxide and 1, 3, 7-Trimethyl xanthine for developing ultraviolet protection, Journal of Industrial Textiles, 50 (3), 398, 2020.
  • 29. Kathirvelu S., D’souza L., Dhurai B., UV protection finishing of textiles using ZnO nanoparticles, Indian Journal of Fibre & Textile Research, 34 (3), 267-273, 2009.
  • 30. Alebeid O.K., Zhao T., Review on: developing UV protection for cotton fabric, The Journal of the Textile Institute, 108 (12), 2027-2039, 2017.
  • 31. Bashari A., Shakeri M., Shirvan A.R., UV-protective textiles, The impact and prospects of green chemistry for textile technology, Editörler: Islam S.U., Butola B.S., Woodhead Publishing, Duxford, Birleşik Krallık, 327-365, 2018.
  • 32. Kibria G., Repon M. R., Hossain M. F., Islam T., Jalil M. A., Aljabri M. D., Rahman M. M., UV-blocking cotton fabric design for comfortable summer wears: factors, durability and nanomaterials, Cellulose, 29 (14), 7555-7585, 2022.
  • 33. Akaydın M., İkiz Y., Kurban N. S., Pamuklu örme kumaşlarda uv işinlarinin geçirgenliğinin ölçümü ve değerlendirilmesi, Tekstil ve Konfeksiyon, 19 (3), 212-217, 2009.
  • 34. Mahetaji K., Mann G., Marchetti S., Raufdeen F., Singh N., 2016, An interdisciplinary investigation into alcohol, caffeine, and prozac. (Doctoral dissertation, Master Thesis, McMaster University. (Unpublised)), 2016.
  • 35. AS/NZS4399. Sun protective clothing, evaluation and classification. Standard Australian and Standard New Zealand, 1996.
  • 36. Sarkar A.K., Textiles for UV protection, Textiles for protection, Editör: Scott R.A., Woodhead Publishing, Cambridge, İngiltere, 355-377, 2005.
  • 37. Hoffmann K., Laperre J., Avermaete A., Altmeyer P., Gambichler T., Defined UV protection by apparel textiles, Archieves of Dermatology, 137, 1089, 2001.
  • 38. Uğur Ş.S., Sariişik M., Aktaş A.H., Fabrication of ZnO Nanoparticle-Based Thin Films on Cotton Fabrics for Antibacterial Purpose. Süleyman Demirel University Journal of Natural & Applied Sciences 14 (1), 95, 2010.
  • 39. Gunasekaran S., Sankari G., Ponnusamy S., Vibrational spectral investigation on xanthine and its derivatives-theophylline, caffeine and theobromine, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 61 (1), 117, 2005.
  • 40. Peng G.W., Chen S.K., Liu H.S., Infrared absorption spectra and their correlation with the Ti-O bond length variations for TiO2 (Rutile), Na-Titanates, and Na-Titanosilicate (Natisite, Na2TiOSiO4), Applied Spectroscopy, 49, 1646, 1995.
  • 41. Beranek R., Kisch H., Tuning the optical and photoelectrochemical properties of surface-modified TiO2, Photochemical & photobiological sciences, 7, 40, 2008.
  • 42. Jnido G., Ohms G., Viöl W., Deposition of zinc oxide coatings on wood surfaces using the solution precursor plasma spraying process, Coatings, 11 (2), 183, 2021.
  • 43. Belay A., Ture K., Redi M., Asfaw A., Measurement of caffeine in coffee beans with UV/vis spectrometer, Food Chemistry, 108 (1), 310, 2008.
  • 44. Atomssa T., Gholap A.V., Characterization of caffeine and determination of caffeine in tea leaves using UV-visible spectrometer, African Journal of Pure and Applied Chemistry, 5 (1), 1, 2011.
  • 45. Navarra G., Moschetti M., Guarrasi V., Mangione M.R., Militello V., Leone M., Simultaneous determination of caffeine and chlorogenic acids in green coffee by UV/Vis spectroscopy, Journal of Chemistry, 1, 2017.
  • 46. Hamdani H.E., Amane M.E., Preparation, spectral, antimicrobial properties and anticancer molecular docking studies of new metal complexes [M (caffeine) 4] (PF6) 2; M= Fe (II), Co (II), Mn (II), Cd (II), Zn (II), Cu (II), Ni (II). Journal of Molecular Structure, 1184, 262-270, 2019.
  • 47. Zak A.K., Abrishami M.E., Majid W.A., Yousefi R., Hosseini S.M., Effects of annealing temperature on some structural and optical properties of ZnO nanoparticles prepared by a modified sol–gel combustion method. Ceramics International, 37 (1), 393, 2011.
  • 48. Kwon H.J., Lee Y.W., Kim H.S., Zhoh C.K., Park K.W., One-dimensional TiO2 nanostructures with improved UV-blocking properties, Materials Letters, 93, 175-178, 2013.
  • 49. Demirbilek N., Kaya M., Yakuphanoğlu F., Investigation of structural and optical properties of pure ZnO and co-doped ZnO: Al: Mnx (x= 1%, 2%, 3%, 5% at.) semiconductor thin films and electrical properties of produced diodes, Journal of the Faculty of Engineering and Architecture of Gazi University, 38 (1), 163-173, 2023.
  • 50. Yang H., Zhu S., Pan N., Studying the mechanisms of titanium dioxide as ultraviolet‐blocking additive for films and fabrics by an improved scheme, Journal of Applied Polymer Science, 92 (5), 3201, 2004.
  • 51. Yu Q.Z., Shen A.A., Anti-ultraviolet treatment for cotton fabrics by dyeing and finishing in one bath and two steps, Journal of Fiber Bioengineering and Informatics, 1 (1), 65-72, 2008.
  • 52. Sricharussin W., Threepopnatkul P., Neamjan N., Effect of various shapes of zinc oxide nanoparticles on cotton fabric for UV-blocking and anti-bacterial properties, Fibers and Polymers, 12 (8), 1037, 2011.
  • 53. Zhang H., Yang L., Imbuing titanium dioxide into cotton fabric using tetrabutyl titanate by hydrothermal method, Journal of the Textile Institute, 103 (8), 885, 2012.
  • 54. Kathirvelu S., D’souza L., Dhurai B., UV protection finishing of textiles using ZnO nanoparticles, Indian Journal of Fibre and Textile Research, 34, 267, 2009.
  • 55. Dadvar S., Tavanai H., Morshed M., UV-protection properties of electrospun polyacrylonitrile nanofibrous mats embedded with MgO and Al2O3 nanoparticles, Journal of Nanoparticle Research, 13 (10), 5163, 2011.
  • 56. Lee K., Lee S., Multifunctionality of poly (vinyl alcohol) nanofiber webs containing titanium dioxide, Journal of Applied Polymer Science, 124 (5), 4038, 2012.
  • 57. Kim C.H., Kim B.H., Yang K.S., TiO2 nanoparticles loaded on graphene/carbon composite nanofibers by electrospinning for increased photocatalysis, Carbon, 50 (7), 2472, 2012.
  • 58. Broasca G., Borcia G., Dumitrascu N., Vrinceanu N., Characterization of ZnO coated polyester fabrics for UV protection, Applied Surface Science, 279, 272, 2013.
Toplam 58 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Fonksiyonel Malzemeler
Bölüm Makaleler
Yazarlar

Canan Sarıcam 0000-0003-3255-3358

Nazan Okur 0000-0001-6780-9769

Janset Öztemur 0000-0002-7727-9172

Oğuzhan Kaşıkçı 0009-0002-8865-2611

Erken Görünüm Tarihi 22 Temmuz 2024
Yayımlanma Tarihi 16 Ağustos 2024
Gönderilme Tarihi 3 Ekim 2023
Kabul Tarihi 5 Mayıs 2024
Yayımlandığı Sayı Yıl 2025

Kaynak Göster

APA Sarıcam, C., Okur, N., Öztemur, J., Kaşıkçı, O. (2024). 1,3,7-Trimetilksantin ile UV koruyucu fonksiyonel pamuklu kumaşların geliştirilmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 40(1), 615-626. https://doi.org/10.17341/gazimmfd.1368640
AMA Sarıcam C, Okur N, Öztemur J, Kaşıkçı O. 1,3,7-Trimetilksantin ile UV koruyucu fonksiyonel pamuklu kumaşların geliştirilmesi. GUMMFD. Ağustos 2024;40(1):615-626. doi:10.17341/gazimmfd.1368640
Chicago Sarıcam, Canan, Nazan Okur, Janset Öztemur, ve Oğuzhan Kaşıkçı. “1,3,7-Trimetilksantin Ile UV Koruyucu Fonksiyonel Pamuklu kumaşların geliştirilmesi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 40, sy. 1 (Ağustos 2024): 615-26. https://doi.org/10.17341/gazimmfd.1368640.
EndNote Sarıcam C, Okur N, Öztemur J, Kaşıkçı O (01 Ağustos 2024) 1,3,7-Trimetilksantin ile UV koruyucu fonksiyonel pamuklu kumaşların geliştirilmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 40 1 615–626.
IEEE C. Sarıcam, N. Okur, J. Öztemur, ve O. Kaşıkçı, “1,3,7-Trimetilksantin ile UV koruyucu fonksiyonel pamuklu kumaşların geliştirilmesi”, GUMMFD, c. 40, sy. 1, ss. 615–626, 2024, doi: 10.17341/gazimmfd.1368640.
ISNAD Sarıcam, Canan vd. “1,3,7-Trimetilksantin Ile UV Koruyucu Fonksiyonel Pamuklu kumaşların geliştirilmesi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 40/1 (Ağustos 2024), 615-626. https://doi.org/10.17341/gazimmfd.1368640.
JAMA Sarıcam C, Okur N, Öztemur J, Kaşıkçı O. 1,3,7-Trimetilksantin ile UV koruyucu fonksiyonel pamuklu kumaşların geliştirilmesi. GUMMFD. 2024;40:615–626.
MLA Sarıcam, Canan vd. “1,3,7-Trimetilksantin Ile UV Koruyucu Fonksiyonel Pamuklu kumaşların geliştirilmesi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, c. 40, sy. 1, 2024, ss. 615-26, doi:10.17341/gazimmfd.1368640.
Vancouver Sarıcam C, Okur N, Öztemur J, Kaşıkçı O. 1,3,7-Trimetilksantin ile UV koruyucu fonksiyonel pamuklu kumaşların geliştirilmesi. GUMMFD. 2024;40(1):615-26.