Araştırma Makalesi
BibTex RIS Kaynak Göster

Investigation of structural and dielectric properties of PVA/Na-Bentonite composites

Yıl 2025, , 287 - 296, 16.08.2024
https://doi.org/10.17341/gazimmfd.1401676

Öz

In this study, polyvinyl alcohol (PVA)/Na-Bentonite composites were prepared. In the preparation of composites, a maximum of 13% polymer by mass was loaded into the clay. Structural properties of composites prepared by solution mixing technique were examined using X-ray fluorescence spectrometry (XRF), Fourier Transform infrared spectrometry (FTIR) and X-ray diffraction (XRD) techniques. Dielectric properties were determined with the help of Dielectric spectroscopy (DS). From the XRF study, it was understood that the origin of the clay was Calcium bentonite (Ca-Bentonite) provided from the Asbro-horio reservoir on the island of Milos, Greece, and that the Supplier (Imerys-Türkiye) converted the clay into Na-Bentonite through the sodium enrichment process. From XRD and FTIR measurements, it was observed that PVA interacted with the Na-bentonite surface instead of being located between the Na-bentonite galleries. This interaction between polymer and clay limited both the segmental movement of the polymer chains and the orientation of the hydroxyl groups on the clay surface. The electrode polarization effect is significantly reduced in composites with low PVA content.

Kaynakça

  • 1. Alexandre M., Dubois P., Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials, Materials Science and Engineering, 28 (1-2), 1-63, 2000.
  • 2. Floody M.C., Theng B. K. G., Reyes P., Mora M. L., Natural nanoclays: applications and future trends – a Chilean perspective. Clay Minerals, 44 (2), 161-176, 2009.
  • 3. Ray S. S., Okamoto M., Polymer/layered silicate nanocomposites: a review from preparation to processing, Prog. Polym. Sci., 28, 1539–1641, 2003.
  • 4. Bulut M., Özbek Ö., Bozkurt Ö.Y., Erkliğ A., Effect of nano clay particle inclusion on axial and lateral buckling characteristics of basalt fiber reinforced composites, Journal of the Faculty of Engineering and Architecture of Gazi University, 37 (4), 1985-1995, 2022.
  • 5. 5.. Bayram S., Mert H.H., Mert M.S., Preparation of shape-stabilized composite phase change materials containing nonadecane with modified kaolinite clay-doped poly(styrene-co-divinyl benzene) matrix and determination of their properties, Journal of the Faculty of Engineering and Architecture of Gazi University, 38 (1), 435-449, 2023.
  • 6. Wang H.W., Shieh C.F., Chang K.C., Chu H.C., Synthesis and dielectric properties of poly(methyl methacrylate)–clay nanocomposite materials, Journal of Applied Polymer Science, 97, 2175–2181, 2005.
  • 7. Cardoso J., Montiel R., Manero O., Synthesis, characterization, and ionic conductivity of nanocomposites: polyelectrolyte systems. Journal of Applied Polymer Science, 119, 1357–1365 2011.
  • 8. Choudhary S., Sengwa R. J., Dielectric spectroscopy and confirmation of ion conduction mechanism in direct melt compounded hot-press polymer nanocomposite electrolytes, Ionics, 17, 811–819, 2011.
  • 9. Sengwa R.J., Choudhary S., Sankhla S., Effect of melt compounding temperature on dielectric relaxation and ionic conduction in PEO–NaClO4–MMT nanocomposite electrolytes, Ionics, 16, 697–707, 2010.
  • 10. Kaya A. U., Guner S., Esmer K., Effects of solution mixing temperature on dielectric properties of PMMA/Pristine bentonite nanocomposites, J. Appl. Polym. Science Chem. 131, 39907, 2014.
  • 11. Keller-Besrest F., Benazeth S., Souleau C., EXAFS structural investigation of a silver-added montmorillonite clay, Materials Letters, 24, 1–3, 17-21, 1995.
  • 12. Choi Y. S., Ham H. T., Chun T., Polymer/silicate nanocomposites synthesized with potassium persulfate at room temperature: polymerization mechanism, characterization, and mechanical properties of the nanocomposites, J. Polymer, 44, 26, 8147-8154, 2003.
  • 13. Zhao Q., Samulski T., In situ polymerization of poly(methyl methacrylate)/clay nanocomposites in supercritical carbon dioxide, Macromolecules , 38, 19, 7967–7971, 2005.
  • 14. Huang X., Brittain W. J., Synthesis and characterization of PMMA nanocomposites by suspension and emulsion polymerization, Macromolecules, 34, 10, 3255–3260, 2001.
  • 15. Shao C., Kim H., Gong J., Ding B., Lee D., Park S., Fiber mats of poly(vinyl alcohol)/silica composite via electrospinning, Materials Letters, 57, 9–10, 1579-1584, 2003.
  • 16. Abushrenta H.M.S., Investigation of tribological performances of EP oil additive with gelatin and PVA coated nanoparticles, Journal of the Faculty of Engineering and Architecture of Gazi University, 38 (4), 2213-2230, 2023.
  • 17. Reddy A. B., Manjula B., Jayaramudu1 T., Sadiku E. R., Fluorouracil Loaded Chitosan–PVA/Na+MMT Nanocomposite Films for Drug Release and Antimicrobial Activity, Nano-Micro Lett., 8 (3), 260–269, 2016.
  • 18. Deshmukh K., Ahamed M.B., Deshmukh R.R., Pasha S.K.K., Sadasivuni K.K., Ponnamma D., Chidambaram K., Synergistic effect of vanadium pentoxide and graphene oxide in polyvinyl alcohol for energy storage application, European Polymer Journal, 76, 14–27, 2016.
  • 19. Sengwa R.J., Choudhary S., Sankhla S., Dielectric spectroscopy of hydrophilic polymers–montmorillonite clay nanocomposite aqueous colloidal suspension, Colloids and Surfaces A: Physicochem. Eng. Aspects, 336, 79–87, 2009.
  • 20. Sengwa R.J., Choudhary S., Sankhla S., Dielectric properties of montmorillonite clay filled poly(vinyl alcohol)/poly(ethylene oxide) blend nanocomposites, Composites Science and Technology, 70, 1621–1627, 2010.
  • 21. Hernandez M. C., Suarez N., Martinez L. A., Feijoo J. L., Monaco S. L., Salazar N., Effects of nanoscale dispersion in the dielectric properties of poly(vinyl alcohol)-bentonite nanocomposites, Phys Rev E Stat Nonlin Soft Matter Phys., 77 (51), 051801, 2008.
  • 22. Kaviratna P. D. *, Thomas J. P., Schroeder P. A., Dielectric Propertıes of Smectite Clays, J. Phys. Chem Solids, 57, 12, 1897-1906, 1996.
  • 23. Brza M., Aziz S.B., Saeed S.R., Hamsan M.H., Majid S.R., Abdulwahid R.T., Kadir Mohd F. Z. and Abdullah Ranjdar M., Energy Storage Behavior of Lithium-Ion Conducting poly(vinyl alcohol) (PVA): Chitosan(CS)-Based Polymer Blend Electrolyte Membranes: Preparation, Equivalent Circuit Modeling, Ion Transport Parameters, and Dielectric Properties, Membranes, 10, 381, 2020.
  • 24. Nguyen C. V., Carter K. R., Hawker C. J., Hedrick J. L., Jaffe R. L., Miller R. D., Remenar J. F., Rhee Hee-Woo, Rice P. M., Toney M. F., Trollsas M., and Yoon Do Y., Carter K. R., Hawker C. J., Hedrick J. L., Jaffe R. L., Miller R. D., Remenar J. F., Rhee H.W., Rice P. M., Toney M. F., Trollsas M., and Yoon D.Y., Low-dielectric, nanoporous organosilicate films prepared via inorganic/organic polymer hybrid templates, Chem. Mater.,11, 3080-3085, 1999.
  • 25. Ramani R. V., Saparia A. D., Markna J. H., Effect of Nanocoating (CuO Nanoparticles) on the Performance of Solar Evacuated Tube, Journal of Sustainable Materials Processing and Management, 2-1, 64-71, 2022.
  • 26. Thuc C. N. Ha, Cao H. T., Nguyen D. M., Tran M. A., Duclaux L., Grillet A.-C., and Thuc H. Ha, Preparation and Characterization of Polyurethane Nanocomposites Using Vietnamese Montmorillonite Modified by Polyol Surfactants, Journal of Nanomaterials, Article ID 302735, 11, 2014.
  • 27. Zagho Moustafa M., Khader Mahmoud M., The Impact of Clay Loading on the Relative Intercalation of Poly(Vinyl Alcohol)-Clay Composites, Journal of Materials Science and Chemical Engineering, 4, 20-31, 2016.
  • 28. Chiristidis;G.E. Shott. P.W., Marcopoulos, T., Origin of the bentonite deposits of eastern milos, Clays and clay minerals, 43, 63-77, 1995.
  • 29. Bourliva A., Michailidis K., SikalidisC. Filippidis.A. Spectroscopic and thermal study of bentonites milos Island, greece,bullenit of the geological society of greece, XLVII,2020-2029, 2013.
  • 30. Mansur H. S., Sadahira C. M., Souza A. N., Mansur A.P., FTIR spectroscopy characterization of poly (vinyl alcohol) hydrogel with different hydrolysis degree and chemically crosslinked with glutaraldehyde, Materials Science and Engineering C, 28, 539–548, 2008.
  • 31. Guisasola C. G., Ribes-Greus A., Dielectric relaxations and conductivity of cross-linked PVA/SSA/GO composite membranes for fuel cells, Polymer Testing, 67, 55-67, 2018.
  • 32. Alshabanat M., AL-Anazy M., Effect of cationic-surfactant-modified Saudi bentonite on the thermal and flammability properties of poly(vinyl alcohol)-based nanocomposite films, ournal of Taibah University for Science, 13 (1), 360-369, 2019.
  • 33. Li, Q., Xue, Q., Hao, L., Gao, X., Zheng, Q., Large Dielectric Constant of the Chemically Functionalized Carbon Nanotube/Polymer Composites. Composites Science andTechnology, 68, 2290-2296, 2008.
  • 34. Turhan Y., Alp Z.G., Alkan M., Doğan M., Preparation and characterization of poly(vinylalcohol)/modified bentonite nanocomposites, Microporous and Mesoporous Materials, 174, 144-153, 2013.
  • 35. Yıldız, A., Genç, Ö., Enstrümental Analiz, A-64, Hacettepe Üniversitesi Yayınları, Ankara, Türkiye, 1993.
  • 36. Chouikhi N., Cecilia J.A., Vilarrasa-García E., Besghaier S., Chlendi M., Duro F.I.F., Castellon E.R. and Bagane M., CO2 Adsorption of Materials Synthesized from Clay Minerals: A Review, Minerals, 9, 514, 2019.
  • 37. Brigatti, M.F., Gala´n, E., Theng, B.K.G., Structures and mineralogy of clay minerals. In: Bergaya, F., Theng, B.K.G., Lagaly, G. (Eds.), Handbook of Clay Science, Development in Clay Science, vol. 1. Elsevier, Amsterdam, 19–86, 2006.
  • 38. Wersina P., Curtib E., Appeloc C.A.J., Modelling bentonite–water interactions at high solid/liquid ratios: swelling and diffuse double layer effects, Applied Clay Science, 26, 249-257, 2004.
  • 39. Bergaya F., Develepmont of clay science, chapter 5, he Boulevard, Langford Lane, Kidlington, Oxford, 2013. 40. İşçi S., Ünlü C H, Atıcı O and Güngör N., Rheology and structure of aqueous bentonite–polyvinyl alcohol dispersions, Bull. Mater. Sci., 29 (5), 449-456, 2006.
  • 41. Wang L, Yang J., Cheng W., Zou J.and Zhao D., Progress on Polymer Composites With Low Dielectric Constant and Low Dielectric Loss for High-Frequency Signal Transmission, Front. Mater. 8, 774843, 2021.
  • 42. Saltas, V.; Vallianatos, F.; Triantis, Dielectric properties of non-swelling bentonite: The effect of temperature and water saturation, D. J. Non-Crystalline Solids, 354, 5533, 2008.
  • 43. Wang H., Xiang F. and Li K., Ceramic–Polymer Ba0.6Sr0.4TiO3/Poly(Methyl Methacrylate) Composites with Different Type Composite Structures for Electronic Technology, Int. J. Appl. Ceram. Technol., 7 (4), 435-443, 2010.
  • 44. Wang Y.P., Xiang-Hu G., Wang R.M., Effect of functionalized montmorillonite addition on the thermal properties and ionic conductivity of PVDF–PEG polymer electrolyte, Reactive & Functional Polymers, 68, 1170-1177, 2008.
  • 45. Yakut Ş., Frequency, temperature-dependent behavior of dielectric properties and determination of glass transition temperature of polyethylene thin film, Journal of the Faculty of Engineering and Architecture of Gazi University, 36 (2), 1105-1118, 2021.
  • 46. Chena S., Yanc X., Liua W., Qiaoa R., Chena S., Luob H., Zhangb D., Polymer-based dielectric nanocomposites with high energy density via using natural sepiolite nanofibers, Chemical Engineering Journal, 401, 126095, 2020.

PVA/Na-Bentonite kompozitlerin yapısal ve dielektrik özelliklerinin incelenmesi

Yıl 2025, , 287 - 296, 16.08.2024
https://doi.org/10.17341/gazimmfd.1401676

Öz

Bu çalışmada Polivinilalkol (PVA)/Na-Bentonit kompozitleri hazırlanmıştır. Kompozitlerin hazırlanmasında kilin içerisine kütlece maksimum %13 oranında polimer yüklenmiştir. Çözelti karıştırma tekniği ile hazırlanan kompozitlerin yapısal özellikleri X-ışını floresans spektrometresi (XRF), Fourier Dönüşümlü kızılötesi spektrometresi (FTIR) ve X-ışını kırınımı (XRD) teknikleri kullanılarak incelenmiştir. Dielektrik özellikler Dielektrik spektroskopi (DS) yardımıyla belirlendi. XRF çalışmasından, kil orijininin Yunanistan'ın milos adasında Asbro-Horio rezervuarından sağlanan Kalsiyum bentonit (Ca-Bentonite) olduğu ve Tedarikçi (Imerys-Türkiye) tarafından kili sodyum zenginleştirme işlemi ile Na-Bentonite dönüştürdüğü anlaşılmıştır. XRD ve FTIR ölçümlerinden PVA'nın Na-bentonit galerileri arasında yer almak yerine Na-Bentonit yüzeyi ile etkileşime girdiği gözlenmiştir. Polimer ve kil arasındaki bu etkileşim, hem polimer zincirlerinin segmental hareketini hem de kil yüzeyindeki hidroksil gruplarının yönelimini sınırlamıştır. Düşük frekans bölgesinde, kompozitlerin dielektrik sabiti (reel kısım) özellikle düşük PVA katkı oranlarında Na-Bentonite göre önemli ölçüde azalmıştır. Elektrot polarizasyon etkisi düşük katkılı kompozitlerde oldukça azalmıştır.

Kaynakça

  • 1. Alexandre M., Dubois P., Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials, Materials Science and Engineering, 28 (1-2), 1-63, 2000.
  • 2. Floody M.C., Theng B. K. G., Reyes P., Mora M. L., Natural nanoclays: applications and future trends – a Chilean perspective. Clay Minerals, 44 (2), 161-176, 2009.
  • 3. Ray S. S., Okamoto M., Polymer/layered silicate nanocomposites: a review from preparation to processing, Prog. Polym. Sci., 28, 1539–1641, 2003.
  • 4. Bulut M., Özbek Ö., Bozkurt Ö.Y., Erkliğ A., Effect of nano clay particle inclusion on axial and lateral buckling characteristics of basalt fiber reinforced composites, Journal of the Faculty of Engineering and Architecture of Gazi University, 37 (4), 1985-1995, 2022.
  • 5. 5.. Bayram S., Mert H.H., Mert M.S., Preparation of shape-stabilized composite phase change materials containing nonadecane with modified kaolinite clay-doped poly(styrene-co-divinyl benzene) matrix and determination of their properties, Journal of the Faculty of Engineering and Architecture of Gazi University, 38 (1), 435-449, 2023.
  • 6. Wang H.W., Shieh C.F., Chang K.C., Chu H.C., Synthesis and dielectric properties of poly(methyl methacrylate)–clay nanocomposite materials, Journal of Applied Polymer Science, 97, 2175–2181, 2005.
  • 7. Cardoso J., Montiel R., Manero O., Synthesis, characterization, and ionic conductivity of nanocomposites: polyelectrolyte systems. Journal of Applied Polymer Science, 119, 1357–1365 2011.
  • 8. Choudhary S., Sengwa R. J., Dielectric spectroscopy and confirmation of ion conduction mechanism in direct melt compounded hot-press polymer nanocomposite electrolytes, Ionics, 17, 811–819, 2011.
  • 9. Sengwa R.J., Choudhary S., Sankhla S., Effect of melt compounding temperature on dielectric relaxation and ionic conduction in PEO–NaClO4–MMT nanocomposite electrolytes, Ionics, 16, 697–707, 2010.
  • 10. Kaya A. U., Guner S., Esmer K., Effects of solution mixing temperature on dielectric properties of PMMA/Pristine bentonite nanocomposites, J. Appl. Polym. Science Chem. 131, 39907, 2014.
  • 11. Keller-Besrest F., Benazeth S., Souleau C., EXAFS structural investigation of a silver-added montmorillonite clay, Materials Letters, 24, 1–3, 17-21, 1995.
  • 12. Choi Y. S., Ham H. T., Chun T., Polymer/silicate nanocomposites synthesized with potassium persulfate at room temperature: polymerization mechanism, characterization, and mechanical properties of the nanocomposites, J. Polymer, 44, 26, 8147-8154, 2003.
  • 13. Zhao Q., Samulski T., In situ polymerization of poly(methyl methacrylate)/clay nanocomposites in supercritical carbon dioxide, Macromolecules , 38, 19, 7967–7971, 2005.
  • 14. Huang X., Brittain W. J., Synthesis and characterization of PMMA nanocomposites by suspension and emulsion polymerization, Macromolecules, 34, 10, 3255–3260, 2001.
  • 15. Shao C., Kim H., Gong J., Ding B., Lee D., Park S., Fiber mats of poly(vinyl alcohol)/silica composite via electrospinning, Materials Letters, 57, 9–10, 1579-1584, 2003.
  • 16. Abushrenta H.M.S., Investigation of tribological performances of EP oil additive with gelatin and PVA coated nanoparticles, Journal of the Faculty of Engineering and Architecture of Gazi University, 38 (4), 2213-2230, 2023.
  • 17. Reddy A. B., Manjula B., Jayaramudu1 T., Sadiku E. R., Fluorouracil Loaded Chitosan–PVA/Na+MMT Nanocomposite Films for Drug Release and Antimicrobial Activity, Nano-Micro Lett., 8 (3), 260–269, 2016.
  • 18. Deshmukh K., Ahamed M.B., Deshmukh R.R., Pasha S.K.K., Sadasivuni K.K., Ponnamma D., Chidambaram K., Synergistic effect of vanadium pentoxide and graphene oxide in polyvinyl alcohol for energy storage application, European Polymer Journal, 76, 14–27, 2016.
  • 19. Sengwa R.J., Choudhary S., Sankhla S., Dielectric spectroscopy of hydrophilic polymers–montmorillonite clay nanocomposite aqueous colloidal suspension, Colloids and Surfaces A: Physicochem. Eng. Aspects, 336, 79–87, 2009.
  • 20. Sengwa R.J., Choudhary S., Sankhla S., Dielectric properties of montmorillonite clay filled poly(vinyl alcohol)/poly(ethylene oxide) blend nanocomposites, Composites Science and Technology, 70, 1621–1627, 2010.
  • 21. Hernandez M. C., Suarez N., Martinez L. A., Feijoo J. L., Monaco S. L., Salazar N., Effects of nanoscale dispersion in the dielectric properties of poly(vinyl alcohol)-bentonite nanocomposites, Phys Rev E Stat Nonlin Soft Matter Phys., 77 (51), 051801, 2008.
  • 22. Kaviratna P. D. *, Thomas J. P., Schroeder P. A., Dielectric Propertıes of Smectite Clays, J. Phys. Chem Solids, 57, 12, 1897-1906, 1996.
  • 23. Brza M., Aziz S.B., Saeed S.R., Hamsan M.H., Majid S.R., Abdulwahid R.T., Kadir Mohd F. Z. and Abdullah Ranjdar M., Energy Storage Behavior of Lithium-Ion Conducting poly(vinyl alcohol) (PVA): Chitosan(CS)-Based Polymer Blend Electrolyte Membranes: Preparation, Equivalent Circuit Modeling, Ion Transport Parameters, and Dielectric Properties, Membranes, 10, 381, 2020.
  • 24. Nguyen C. V., Carter K. R., Hawker C. J., Hedrick J. L., Jaffe R. L., Miller R. D., Remenar J. F., Rhee Hee-Woo, Rice P. M., Toney M. F., Trollsas M., and Yoon Do Y., Carter K. R., Hawker C. J., Hedrick J. L., Jaffe R. L., Miller R. D., Remenar J. F., Rhee H.W., Rice P. M., Toney M. F., Trollsas M., and Yoon D.Y., Low-dielectric, nanoporous organosilicate films prepared via inorganic/organic polymer hybrid templates, Chem. Mater.,11, 3080-3085, 1999.
  • 25. Ramani R. V., Saparia A. D., Markna J. H., Effect of Nanocoating (CuO Nanoparticles) on the Performance of Solar Evacuated Tube, Journal of Sustainable Materials Processing and Management, 2-1, 64-71, 2022.
  • 26. Thuc C. N. Ha, Cao H. T., Nguyen D. M., Tran M. A., Duclaux L., Grillet A.-C., and Thuc H. Ha, Preparation and Characterization of Polyurethane Nanocomposites Using Vietnamese Montmorillonite Modified by Polyol Surfactants, Journal of Nanomaterials, Article ID 302735, 11, 2014.
  • 27. Zagho Moustafa M., Khader Mahmoud M., The Impact of Clay Loading on the Relative Intercalation of Poly(Vinyl Alcohol)-Clay Composites, Journal of Materials Science and Chemical Engineering, 4, 20-31, 2016.
  • 28. Chiristidis;G.E. Shott. P.W., Marcopoulos, T., Origin of the bentonite deposits of eastern milos, Clays and clay minerals, 43, 63-77, 1995.
  • 29. Bourliva A., Michailidis K., SikalidisC. Filippidis.A. Spectroscopic and thermal study of bentonites milos Island, greece,bullenit of the geological society of greece, XLVII,2020-2029, 2013.
  • 30. Mansur H. S., Sadahira C. M., Souza A. N., Mansur A.P., FTIR spectroscopy characterization of poly (vinyl alcohol) hydrogel with different hydrolysis degree and chemically crosslinked with glutaraldehyde, Materials Science and Engineering C, 28, 539–548, 2008.
  • 31. Guisasola C. G., Ribes-Greus A., Dielectric relaxations and conductivity of cross-linked PVA/SSA/GO composite membranes for fuel cells, Polymer Testing, 67, 55-67, 2018.
  • 32. Alshabanat M., AL-Anazy M., Effect of cationic-surfactant-modified Saudi bentonite on the thermal and flammability properties of poly(vinyl alcohol)-based nanocomposite films, ournal of Taibah University for Science, 13 (1), 360-369, 2019.
  • 33. Li, Q., Xue, Q., Hao, L., Gao, X., Zheng, Q., Large Dielectric Constant of the Chemically Functionalized Carbon Nanotube/Polymer Composites. Composites Science andTechnology, 68, 2290-2296, 2008.
  • 34. Turhan Y., Alp Z.G., Alkan M., Doğan M., Preparation and characterization of poly(vinylalcohol)/modified bentonite nanocomposites, Microporous and Mesoporous Materials, 174, 144-153, 2013.
  • 35. Yıldız, A., Genç, Ö., Enstrümental Analiz, A-64, Hacettepe Üniversitesi Yayınları, Ankara, Türkiye, 1993.
  • 36. Chouikhi N., Cecilia J.A., Vilarrasa-García E., Besghaier S., Chlendi M., Duro F.I.F., Castellon E.R. and Bagane M., CO2 Adsorption of Materials Synthesized from Clay Minerals: A Review, Minerals, 9, 514, 2019.
  • 37. Brigatti, M.F., Gala´n, E., Theng, B.K.G., Structures and mineralogy of clay minerals. In: Bergaya, F., Theng, B.K.G., Lagaly, G. (Eds.), Handbook of Clay Science, Development in Clay Science, vol. 1. Elsevier, Amsterdam, 19–86, 2006.
  • 38. Wersina P., Curtib E., Appeloc C.A.J., Modelling bentonite–water interactions at high solid/liquid ratios: swelling and diffuse double layer effects, Applied Clay Science, 26, 249-257, 2004.
  • 39. Bergaya F., Develepmont of clay science, chapter 5, he Boulevard, Langford Lane, Kidlington, Oxford, 2013. 40. İşçi S., Ünlü C H, Atıcı O and Güngör N., Rheology and structure of aqueous bentonite–polyvinyl alcohol dispersions, Bull. Mater. Sci., 29 (5), 449-456, 2006.
  • 41. Wang L, Yang J., Cheng W., Zou J.and Zhao D., Progress on Polymer Composites With Low Dielectric Constant and Low Dielectric Loss for High-Frequency Signal Transmission, Front. Mater. 8, 774843, 2021.
  • 42. Saltas, V.; Vallianatos, F.; Triantis, Dielectric properties of non-swelling bentonite: The effect of temperature and water saturation, D. J. Non-Crystalline Solids, 354, 5533, 2008.
  • 43. Wang H., Xiang F. and Li K., Ceramic–Polymer Ba0.6Sr0.4TiO3/Poly(Methyl Methacrylate) Composites with Different Type Composite Structures for Electronic Technology, Int. J. Appl. Ceram. Technol., 7 (4), 435-443, 2010.
  • 44. Wang Y.P., Xiang-Hu G., Wang R.M., Effect of functionalized montmorillonite addition on the thermal properties and ionic conductivity of PVDF–PEG polymer electrolyte, Reactive & Functional Polymers, 68, 1170-1177, 2008.
  • 45. Yakut Ş., Frequency, temperature-dependent behavior of dielectric properties and determination of glass transition temperature of polyethylene thin film, Journal of the Faculty of Engineering and Architecture of Gazi University, 36 (2), 1105-1118, 2021.
  • 46. Chena S., Yanc X., Liua W., Qiaoa R., Chena S., Luob H., Zhangb D., Polymer-based dielectric nanocomposites with high energy density via using natural sepiolite nanofibers, Chemical Engineering Journal, 401, 126095, 2020.
Toplam 45 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Kompozit ve Hibrit Malzemeler
Bölüm Makaleler
Yazarlar

Yeşim Akar 0009-0002-6960-5334

Ahmet Uğur Kaya 0000-0003-4867-3135

Erken Görünüm Tarihi 20 Mayıs 2024
Yayımlanma Tarihi 16 Ağustos 2024
Gönderilme Tarihi 7 Aralık 2023
Kabul Tarihi 14 Mart 2024
Yayımlandığı Sayı Yıl 2025

Kaynak Göster

APA Akar, Y., & Kaya, A. U. (2024). PVA/Na-Bentonite kompozitlerin yapısal ve dielektrik özelliklerinin incelenmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 40(1), 287-296. https://doi.org/10.17341/gazimmfd.1401676
AMA Akar Y, Kaya AU. PVA/Na-Bentonite kompozitlerin yapısal ve dielektrik özelliklerinin incelenmesi. GUMMFD. Ağustos 2024;40(1):287-296. doi:10.17341/gazimmfd.1401676
Chicago Akar, Yeşim, ve Ahmet Uğur Kaya. “PVA/Na-Bentonite Kompozitlerin yapısal Ve Dielektrik özelliklerinin Incelenmesi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 40, sy. 1 (Ağustos 2024): 287-96. https://doi.org/10.17341/gazimmfd.1401676.
EndNote Akar Y, Kaya AU (01 Ağustos 2024) PVA/Na-Bentonite kompozitlerin yapısal ve dielektrik özelliklerinin incelenmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 40 1 287–296.
IEEE Y. Akar ve A. U. Kaya, “PVA/Na-Bentonite kompozitlerin yapısal ve dielektrik özelliklerinin incelenmesi”, GUMMFD, c. 40, sy. 1, ss. 287–296, 2024, doi: 10.17341/gazimmfd.1401676.
ISNAD Akar, Yeşim - Kaya, Ahmet Uğur. “PVA/Na-Bentonite Kompozitlerin yapısal Ve Dielektrik özelliklerinin Incelenmesi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 40/1 (Ağustos 2024), 287-296. https://doi.org/10.17341/gazimmfd.1401676.
JAMA Akar Y, Kaya AU. PVA/Na-Bentonite kompozitlerin yapısal ve dielektrik özelliklerinin incelenmesi. GUMMFD. 2024;40:287–296.
MLA Akar, Yeşim ve Ahmet Uğur Kaya. “PVA/Na-Bentonite Kompozitlerin yapısal Ve Dielektrik özelliklerinin Incelenmesi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, c. 40, sy. 1, 2024, ss. 287-96, doi:10.17341/gazimmfd.1401676.
Vancouver Akar Y, Kaya AU. PVA/Na-Bentonite kompozitlerin yapısal ve dielektrik özelliklerinin incelenmesi. GUMMFD. 2024;40(1):287-96.