6G için akışkan anten çoklu erişiminin potansiyelinin ortaya çıkarılması: bir performans çalışması
Yıl 2025,
Cilt: 40 Sayı: 4, 2797 - 2806, 31.12.2025
Muhammet Ali Karabulut
,
A F M Shahen Shah
Öz
6G'ye doğru ilerleyen kablosuz iletişim ağları, artan veri hızı ve bağlantı taleplerini karşılamak için yeni teknolojiler gerektirmektedir. Akışkan Anten Çoklu Erişimi (FAMA), anten konumlarını dinamik olarak değiştirerek bu talepleri karşılayabilecek umut verici bir tekniktir. Bu çalışma, 6G ağları için FAMA teknolojisinin kapsamlı bir performans analizini sunmaktadır. Yavaş FAMA (s-FAMA) ve hızlı FAMA (f-FAMA) olmak üzere iki temel FAMA tekniği incelenmiş ve bu sistemler için temel performans metriklerini tanımlayan matematiksel ifadeler türetilmiştir. Rayleigh kanal sönümleme modeli ele alınmıştır. Elde edilen sayısal sonuçlar, iki tekniğin farklı senaryolar altındaki performansını karşılaştırmalı olarak ortaya koymaktadır. Sonuç olarak bu analiz, FAMA'nın 6G ağlarındaki potansiyelini ve farklı FAMA türlerinin hangi koşullar altında daha avantajlı olduğunu göstermektedir.
Etik Beyan
Bu çalışma Türkiye Bilimsel ve Teknolojik Araştırma Kurumu (TÜBİTAK) tarafından 124E519 nolu proje kapsamında desteklenmektedir.
Destekleyen Kurum
TÜBİTAK
Kaynakça
-
Kaynaklar (References)
-
1. Shah A.F.M.S., A Survey From 1G to 5G Including the Advent of 6G: Architectures, Multiple Access Techniques, and Emerging Technologies, IEEE 12th Annual Computing and Communication Workshop and Conference (CCWC), Las Vegas, NV, USA, 1117-1123, 2022.
-
2. Shah A.F.M.S., Qasim A.N., Karabulut M.A., Ilhan H. and Islam Md.B., Survey and Performance Evaluation of Multiple Access Schemes for Next-Generation Wireless Communication Systems, IEEE Access, 9 (1), 113428-113442, 2021.
-
3. Shah A.F.M.S., Karabulut M.A., and Rabie K., Multiple Access Schemes for 6G Enabled NTN-Assisted IoT Technologies: Recent Developments, Prospects and Challenges, IEEE Internet of Things Magazine, 7(1), 48-54, 2024.
-
4. Shojaeifard A. et al., MIMO Evolution Beyond 5G Through Reconfigurable Intelligent Surfaces and Fluid Antenna Systems, in Proceedings of the IEEE, 110 (9), 1244-1265, 2022.
-
5. New W.K., Wong K.-K., Xu H., Tong K.-F., Chae C.-B. and Zhang Y., Fluid Antenna System Enhancing Orthogonal and Non-Orthogonal Multiple Access, IEEE Communications Letters, 28 (1), 218-222, 2024.
-
6. Wong K.-K., Tong K.-F., Shen Y., Chen Y., and Zhang Y., Bruce Lee-Inspired Fluid Antenna System: Six Research Topics and the Potentials for 6G, Frontiers Commun. Netw., 3 (853416), 1–31, 2022.
-
7. Huang Y., Xing L., Song C., Wang S. and Elhouni F., Liquid Antennas: Past, Present and Future, IEEE Open Journal of Antennas and Propagation, 2, 473-487, 2021.
-
8. Bieńkowski P., Zubrzak B., Sobkiewicz P., Bechta K. and Rybakowski M., Simplified Methodology of Electromagnetic Field Measurements in the Vicinity of 5G Massive MIMO Base Station for Environmental Exposure Assessment, IEEE Access, 12, 8071-8080, 2024.
-
9. Pinchera D., M Migliore., and Schettino F., Compliance boundaries of 5G massive MIMO radio base stations: A statistical approach, IEEE Access, 8, 182787–182800, 2020.
-
10. Shen Y., Tong K.-F. and Wong K.-K., Reconfigurable Surface Wave Fluid Antenna for Spatial MIMO Applications, IEEE-APS Topical Conference on Antennas and Propagation in Wireless Communications, Honolulu, USA, 150-152, 2021.
-
11. Alhaj N.A. et al., Integration of Hybrid Networks, AI, Ultra Massive-MIMO, THz Frequency, and FBMC Modulation Toward 6G Requirements: A Review, IEEE Access, 12, 483-513, 2024.
-
12. Larsson E.G., Edfors O., Tufvesson F. and Marzetta T.L., Massive MIMO for next generation wireless systems, IEEE Communications Magazine, 52 (2), 186-195, 2014.
-
13. Pereira de Figueiredo F.A., An Overview of Massive MIMO for 5G and 6G, IEEE Latin America Transactions, 20 (6), 931-940, 2022.
-
14. Wong K.-K., Morales-Jimenez D., Tong K.-F. and Chae C.-B., Slow Fluid Antenna Multiple Access, in IEEE Transactions on Communications, 71 (5), 2831-2846, 2023.
-
15. Chen Y., Li S., Hou Y. and Tao X., Energy-Efficiency Optimization for Slow Fluid Antenna Multiple Access Using Mean-Field Game, IEEE Wireless Communications Letters, 13 (4), 915-918, April 2024.
-
16. Yang H., Wong K.-K., Tong K.-F., Zhang Y. and Chae C.-B., Performance Analysis of Slow Fluid Antenna Multiple Access in Noisy Channels Using Gauss-Laguerre and Gauss-Hermite Quadratures, IEEE Communications Letters, 27 (7), 1734-1738, 2023.
-
17. Wong K.-K., et al. Maximizing the Network Outage Rate for Fast Fluid Antenna Multiple Access Systems. IET Communications, 17 (8), 928-939, 2023.
-
18. New W.K., Wong K.-K., Xu H., Tong K.-F. and Chae C.-B., Fluid Antenna System: New Insights on Outage Probability and Diversity Gain, IEEE Transactions on Wireless Communications, 23 (1), 128-140, Jan. 2024.
-
19. Yang H., Lin X., Wong K. -K. and Zhao Y., Fast Fluid Antenna Multiple Access With Path Loss Consideration and Different Antenna Architecture, IEEE 22nd International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom), Exeter, United Kingdom, 2386-2393, 2023.
-
20. Shah A.F.M.S., Karabulut M.A., Cinar E. and Rabie K., A Survey on Fluid Antenna Multiple Access for 6G: A New Multiple Access Technology That Provides Great Diversity in a Small Space, IEEE Access, 12, 88410-88425, 2024.
-
21. Wang H., Shen Y., Tong K.-F. and Wong K.-K., Continuous Electrowetting Surface-Wave Fluid Antenna for Mobile Communications, IEEE Region 10 Conference (TENCON), Hong Kong, 1-3, 2022.
-
22. Karabulut M.A., Shah A.F.M.S., Performance modeling and analysis of the IEEE 802.11 MAC protocol for VANETs, Journal of the Faculty of Engineering and Architecture of Gazi University, 35 (3), 1575-1588, 2020.
-
23. Shah A.F.M.S., Karabulut M.A., Cinar E. and Rabie K., Performance Analysis of Fluid Antenna Multiple Access (FAMA) for 6G, IEEE 15th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON), Berkeley, CA, USA, 301-305, 2024.
-
24. Tlebaldiyeva L., Arzykulov S., Rabie K.M., Li X. and Nauryzbayev G., Outage Performance of Fluid Antenna System (FAS) aided Terahertz Communication Networks, IEEE International Conference on Communications (ICC), Rome, Italy, 1922-1927, 2023.
-
25. Xu H., Wong K. -K., New W. K., Tong K. -F., Zhang Y. and Chae C. -B., Revisiting Outage Probability Analysis for Two-User Fluid Antenna Multiple Access System, IEEE Transactions on Wireless Communications, 23 (8), 9534-9548, 2024.
-
26. Karabulut M.A., Shah A.F.M.S., The impact of cooperative unmanned aerial vehicles communication under Nakagami-m fading channel, Journal of the Faculty of Engineering and Architecture of Gazi University, 38 (4), 2095-2106, 2023.
-
27. Vega-Sánchez J.D., Urquiza-Aguiar L.F., Mora H.R.C., Garzón N.V.O. and Osorio D.P.M., Fluid Antenna System: Secrecy Outage Probability Analysis, IEEE Transactions on Vehicular Technology, 73(8), 11458-11469, 2024.
-
28. Xu H., Wong K. -K., New W. K. and Tong K. -F., On Outage Probability for Two-User Fluid Antenna Multiple Access, IEEE International Conference on Communications (ICC), Rome, Italy, 2246-2251, 2023.
Yıl 2025,
Cilt: 40 Sayı: 4, 2797 - 2806, 31.12.2025
Muhammet Ali Karabulut
,
A F M Shahen Shah
Kaynakça
-
Kaynaklar (References)
-
1. Shah A.F.M.S., A Survey From 1G to 5G Including the Advent of 6G: Architectures, Multiple Access Techniques, and Emerging Technologies, IEEE 12th Annual Computing and Communication Workshop and Conference (CCWC), Las Vegas, NV, USA, 1117-1123, 2022.
-
2. Shah A.F.M.S., Qasim A.N., Karabulut M.A., Ilhan H. and Islam Md.B., Survey and Performance Evaluation of Multiple Access Schemes for Next-Generation Wireless Communication Systems, IEEE Access, 9 (1), 113428-113442, 2021.
-
3. Shah A.F.M.S., Karabulut M.A., and Rabie K., Multiple Access Schemes for 6G Enabled NTN-Assisted IoT Technologies: Recent Developments, Prospects and Challenges, IEEE Internet of Things Magazine, 7(1), 48-54, 2024.
-
4. Shojaeifard A. et al., MIMO Evolution Beyond 5G Through Reconfigurable Intelligent Surfaces and Fluid Antenna Systems, in Proceedings of the IEEE, 110 (9), 1244-1265, 2022.
-
5. New W.K., Wong K.-K., Xu H., Tong K.-F., Chae C.-B. and Zhang Y., Fluid Antenna System Enhancing Orthogonal and Non-Orthogonal Multiple Access, IEEE Communications Letters, 28 (1), 218-222, 2024.
-
6. Wong K.-K., Tong K.-F., Shen Y., Chen Y., and Zhang Y., Bruce Lee-Inspired Fluid Antenna System: Six Research Topics and the Potentials for 6G, Frontiers Commun. Netw., 3 (853416), 1–31, 2022.
-
7. Huang Y., Xing L., Song C., Wang S. and Elhouni F., Liquid Antennas: Past, Present and Future, IEEE Open Journal of Antennas and Propagation, 2, 473-487, 2021.
-
8. Bieńkowski P., Zubrzak B., Sobkiewicz P., Bechta K. and Rybakowski M., Simplified Methodology of Electromagnetic Field Measurements in the Vicinity of 5G Massive MIMO Base Station for Environmental Exposure Assessment, IEEE Access, 12, 8071-8080, 2024.
-
9. Pinchera D., M Migliore., and Schettino F., Compliance boundaries of 5G massive MIMO radio base stations: A statistical approach, IEEE Access, 8, 182787–182800, 2020.
-
10. Shen Y., Tong K.-F. and Wong K.-K., Reconfigurable Surface Wave Fluid Antenna for Spatial MIMO Applications, IEEE-APS Topical Conference on Antennas and Propagation in Wireless Communications, Honolulu, USA, 150-152, 2021.
-
11. Alhaj N.A. et al., Integration of Hybrid Networks, AI, Ultra Massive-MIMO, THz Frequency, and FBMC Modulation Toward 6G Requirements: A Review, IEEE Access, 12, 483-513, 2024.
-
12. Larsson E.G., Edfors O., Tufvesson F. and Marzetta T.L., Massive MIMO for next generation wireless systems, IEEE Communications Magazine, 52 (2), 186-195, 2014.
-
13. Pereira de Figueiredo F.A., An Overview of Massive MIMO for 5G and 6G, IEEE Latin America Transactions, 20 (6), 931-940, 2022.
-
14. Wong K.-K., Morales-Jimenez D., Tong K.-F. and Chae C.-B., Slow Fluid Antenna Multiple Access, in IEEE Transactions on Communications, 71 (5), 2831-2846, 2023.
-
15. Chen Y., Li S., Hou Y. and Tao X., Energy-Efficiency Optimization for Slow Fluid Antenna Multiple Access Using Mean-Field Game, IEEE Wireless Communications Letters, 13 (4), 915-918, April 2024.
-
16. Yang H., Wong K.-K., Tong K.-F., Zhang Y. and Chae C.-B., Performance Analysis of Slow Fluid Antenna Multiple Access in Noisy Channels Using Gauss-Laguerre and Gauss-Hermite Quadratures, IEEE Communications Letters, 27 (7), 1734-1738, 2023.
-
17. Wong K.-K., et al. Maximizing the Network Outage Rate for Fast Fluid Antenna Multiple Access Systems. IET Communications, 17 (8), 928-939, 2023.
-
18. New W.K., Wong K.-K., Xu H., Tong K.-F. and Chae C.-B., Fluid Antenna System: New Insights on Outage Probability and Diversity Gain, IEEE Transactions on Wireless Communications, 23 (1), 128-140, Jan. 2024.
-
19. Yang H., Lin X., Wong K. -K. and Zhao Y., Fast Fluid Antenna Multiple Access With Path Loss Consideration and Different Antenna Architecture, IEEE 22nd International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom), Exeter, United Kingdom, 2386-2393, 2023.
-
20. Shah A.F.M.S., Karabulut M.A., Cinar E. and Rabie K., A Survey on Fluid Antenna Multiple Access for 6G: A New Multiple Access Technology That Provides Great Diversity in a Small Space, IEEE Access, 12, 88410-88425, 2024.
-
21. Wang H., Shen Y., Tong K.-F. and Wong K.-K., Continuous Electrowetting Surface-Wave Fluid Antenna for Mobile Communications, IEEE Region 10 Conference (TENCON), Hong Kong, 1-3, 2022.
-
22. Karabulut M.A., Shah A.F.M.S., Performance modeling and analysis of the IEEE 802.11 MAC protocol for VANETs, Journal of the Faculty of Engineering and Architecture of Gazi University, 35 (3), 1575-1588, 2020.
-
23. Shah A.F.M.S., Karabulut M.A., Cinar E. and Rabie K., Performance Analysis of Fluid Antenna Multiple Access (FAMA) for 6G, IEEE 15th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON), Berkeley, CA, USA, 301-305, 2024.
-
24. Tlebaldiyeva L., Arzykulov S., Rabie K.M., Li X. and Nauryzbayev G., Outage Performance of Fluid Antenna System (FAS) aided Terahertz Communication Networks, IEEE International Conference on Communications (ICC), Rome, Italy, 1922-1927, 2023.
-
25. Xu H., Wong K. -K., New W. K., Tong K. -F., Zhang Y. and Chae C. -B., Revisiting Outage Probability Analysis for Two-User Fluid Antenna Multiple Access System, IEEE Transactions on Wireless Communications, 23 (8), 9534-9548, 2024.
-
26. Karabulut M.A., Shah A.F.M.S., The impact of cooperative unmanned aerial vehicles communication under Nakagami-m fading channel, Journal of the Faculty of Engineering and Architecture of Gazi University, 38 (4), 2095-2106, 2023.
-
27. Vega-Sánchez J.D., Urquiza-Aguiar L.F., Mora H.R.C., Garzón N.V.O. and Osorio D.P.M., Fluid Antenna System: Secrecy Outage Probability Analysis, IEEE Transactions on Vehicular Technology, 73(8), 11458-11469, 2024.
-
28. Xu H., Wong K. -K., New W. K. and Tong K. -F., On Outage Probability for Two-User Fluid Antenna Multiple Access, IEEE International Conference on Communications (ICC), Rome, Italy, 2246-2251, 2023.