Experimental investigation of the effects of mini-channel and flow arrangement on thermohydraulic performance of a shell and tube heat exchanger
Yıl 2025,
Cilt: 40 Sayı: 3, 2029 - 2046, 21.08.2025
Murat Ünverdi
,
Mehmet Senan Yılmaz
,
Hasan Küçük
Öz
Mini-channels (MCs) encountered in natural biological structures are becoming widespread in technological applications. In heat and mass transfer systems using MCs, compactness can be increased, and the size, volume and amount of working fluid can be reduced. In order to enhance the heat transfer using MCs, the changes in the overall heat transfer coefficient (OHTC) and pressure drop with counter and co-current (parallel) flow arrangements in the shell and tube mini-channel heat exchanger (ST-MC-HX) were experimentally investigated. In addition, the experimental results of the ST-MC-HX are compared with those of the shell and tube heat exchangers (ST-HXs) from the literature. Furthermore, the operating limits of the ST-MC-HX were determined with the performance index (). The counter flow experimental OHTCs vary between 1750-3950 W/m2K, while co-current flow experimental OHTCs vary between 1270-3675 W/m2K. The OHTCs of the ST-MC-HX are 25% higher on average than those in the literature. However, the use of MC increased the pressure drops. According to the performance index of the ST-MC-HX, the operating limits are 5000
Kaynakça
-
1. Kandlikar S., Garimella S., Li D., Colin S., King M. R., Heat Transfer and Fluid Flow in Minichannels and Microchannels, Butterworth-Heinemann, Oxford, UK, 2014.
-
2. Kandlikar S. G., Steinke M. E., Examples of microchannel mass transfer processes in biological systems, Proceedings of First International Conference on Minichannels and Microchannels. ASME, Rochester, NY, 933-943, April 24-25, 2003.
-
3. Yu Z.-Q., Li M.-T., Cao B.-Y., A comprehensive review on microchannel heat sinks for electronics cooling, International Journal of Extreme Manufacturing, 6 (2), 022005, 2024.
-
4. Wadekar V. V., Heat exchangers in process industry and mini-and microscale heat transfer, Proceedings of Fifth International Conference on Enhanced, Compact and Ultra-Compact Heat Exchangers: Science, Engineering and Technology, Hoboken, NJ, USA, 318-322, September, 2005.
-
5. Mehendale S. S., Jacobi A. M., Shah R. K., Fluid flow and heat transfer at micro-and meso-scales with applications to heat exchanger design, Applied Mechanics Reviews, 53 (7), 175–193, 2000.
-
6. Kandlikar S. G., Grande W. J., Evolution of microchannel flow passages—thermohydraulic performance and fabrication technology, Heat Transfer Engineering, 24 (1), 3-1, 2003.
-
7. Kakac S., Liu H., Pramuanjaroenkij A., Heat Exchangers Selection, Rating, and Thermal Design, CRC Press, New York, USA, 2020.
-
8. Kandlikar S.G., A Roadmap for Implementing Minichannels in Refrigeration and Air-Conditioning Systems—Current Status and Future Directions, Heat Transfer Engineering, 28 (12), 973–985, 2007.
-
9. Van de Bor D. M., Mini-channel heat exchangers for industrial distillation processes, Doktora Tezi, Delft/Netherlands University of Technology, Delft, 2014.
-
10. Hesselgreaves J. E., Law R., Reay D. A., Compact Heat Exchangers Selection, Design and Operation, Butterworth-Heinemann, Oxford, UK, 2017.
-
11. Sekulić D. P., Shah R. K., Fundamentals of Heat Exchanger Design, John Wiley & Sons, Hoboken, USA, 2024.
-
12. Cui P., Yang W., Zhang W., Zhu K., Spitler J. D., Yu M., Advances in ground heat exchangers for space heating and cooling: Review and perspectives, Energy and Built Environment, 5 (2), 255-269, 2024.
-
13. Ko Y. M., Song J. Y., Lee J. W., Sohn S., Song C. H., Khoshvaght-Aliabadi, M., ... & Kang, Y. T., A critical review on Colburn j-factor and f-factor and energy performance analysis for finned tube heat exchangers, Energy, 287, 129609, 2024.
-
14. Yılmaz R., Özbalta N., Investigation of the thermal-hydraulic properties of a l-footed spiral finned tube heat exchanger and derivation of new empirical correlations, Journal of the Faculty of Engineering and Architecture of Gazi University, 40 (2), 1357–1370, 2025.
-
15. Tekin Y., Bilgili M., Numerical and experimental investigation of fin height effect in plug-in modules cooled by direct airflow through method, Journal of the Faculty of Engineering and Architecture of Gazi University, 39 (4), 2617–2630, 2024.
-
16. Aljashaami B. A., Ali B. M., Salih S. A., Alwan N. T., Majeed M. H., Ali O. M., ... & Shcheklein S. E., Recent improvements to heating, ventilation, and cooling technologies for buildings based on renewable energy to achieve zero-energy buildings: A systematic review, Results in Engineering, 102769, 2024.
-
17. Daadoua M., Mathew B., Alnaimat F., Experimental investigation of pressure drop and heat transfer in minichannel with smooth and pin fin surfaces, International Journal of Thermofluids, 21, 100542, 2024.
-
18. Shin J. S., Kim M. H., An experimental study of flow condensation heat transfer in-side circular and rectangular mini-channels, Heat Transfer Engineering, 26, 36–44, 2005.
-
19. Dutkowski K., Two-phase pressure drop of air-water in minichannels, International Journal of Heat and Mass Transfer, 52, 5185–5192, 2009.
-
20. Bilen K., Erdoğan İ., Özgüç F., Yoğuşma konusundaki literatüre genel bakış, Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 40 (1), 713–748, 2024.
-
21. Col D. D., Cavallini A., Da Riva E., Mancin S., Censi G., Shell-and-Tube Minichannel Condenser for Low Refrigerant Charge, Heat Transfer Engineering 31 (6), 509–517, 2010.
-
22. Hejcik J., Jicha M., Single phase heat transfer in minichannels, EPJ Web of Conference 67, 02034, 2014.
-
23. Trang N.V., Trung D.T., Dzung D.V., Experimental study of alternative minichannel heat exchanger for scooter radiator, International Journal of Emerging Research in Management & Technology, 6 (4), 46–50, 2017.
-
24. Thulukkanam K., Heat exchanger design handbook, Volume I, CRC Press, New York, USA, 2024.
-
25. Ünverdi M., Küçük H., Yılmaz M. S., Nanoakışkanların enerji verimliliğine etkileri: mini kanallı gövde borulu ısı değiştiricide soğuyan nanoakışkanların deneysel performans incelemesi, Isı Bilimi ve Tekniği Dergisi, 44 (2), 259-279, 2024.
-
26. Çengel Y.A., Ghajar A.J Heat and mass transfer: fundamentals and applications, McGraw-Hill, New York, USA, 2020.
-
27. Hassaan A.M., An investigation for the performance of the using of nanofluids in shell and tube heat exchanger, International Journal of Thermal Sciences, 177, 107569, 2022.
-
28. Dhinesh Kumar D., Arasu A. V., Experimental investigation on dimensionless numbers and heat transfer in nanocompositefluid shell and tube heat exchanger, Thermal Analysis and Calorimetry, 143, 1537-1553, 2021.
-
29. Karimi S., Heyhat M.M., Isfahani A.H.M., Hosseinian A., Experimental investigation of convective heat transfer and pressure drop of SiC/water nanofluid in a shell and tube heat exchanger, Heat Mass Transfer, 56 (8), 2325–2331, 2020.
-
30. Salem M.R., Experimental investigation on the hydrothermal attributes of MWCNT/water nanofluid in the shell-side of shell and semi-circular tubes heat exchanger, Applied Thermal Engineering, 176, 115438, 2020.
-
31. Sameer S., Prakash S.B., Ganesha T., Narayana S.G., Study on effectiveness using copper oxide nanofluid in shell and tube heat exchanger, International Journal of Engineering Trends and Technology, 68 (12), 1-9, 2020.
-
32. Fares M., Mohammad, A. M., Mohammed, A. S., Heat transfer analysis of a shell and tube heat exchanger operated with graphene nanofluids, Case Studies in Thermal Engineering, 18, 100584, 2020.
-
33. Sajjad M., Ali H., Kamran M.S., Thermal-hydraulic analysis of water based ZrO2 nanofluids in segmental baffled shell and tube heat exchangers, Thermal Science, 24 (2 Part B), 1195-1205, 2020.
-
34. Sivamani S., Murugan M., Venkatesan H., Premkumar M., Effect of flow rates on segmental baffle shell and tube heat exchanger using CuO-W nanofluids, World Journal of Engineering, 17 (1), 115–126, 2020.
-
35. Barzegarian R., Aloueyan A., Yousefi T., Thermal performance augmentation using water based Al2O3-gamma nanofluid in a horizontal shell and tube heat exchanger under forced circulation, International Communications in Heat and Mass Transfer, 86, 52-59, 2017.
-
36. Nallusamy S., Manikanda Prabu N., Heat Transfer Enhancement analysis of Al2O3-Water nanofluid through parallel and counter flow in shell and tube heat exchangers, International Journal of Nanoscience, 16, 1750020, 2017.
-
37. Kabeel A.E., Abdelgaied M., Overall heat transfer coefficient and pressure drop in a typical tubular exchanger employing alumina nano-fluid as the tube side hot fluid, Heat and Mass Transfer, 52, 1417-1424, 2016.
-
38. Godson L., Deepak K., Enoch C., Raja B.R.J., Raja B., Heat transfer characteristics of silver/water nanofluids in a shell and tube heat exchanger, Archives of Civil and Mechanical Engineering, 14, 489-496, 2014.
-
39. Shahrul, I. M., Mahbubul, I. M., Saidur, R., Sabri, M. F. M., Experimental investigation on Al2O3–W, SiO2–W and ZnO–W nanofluids and their application in a shell and tube heat exchanger, International Journal of Heat and Mass Transfer, 97, 547-558, 2016.
-
40. Albadr J., Tayal S., Alasadi M., Heat transfer through heat exchanger using Al2O3 nanofluid at different concentrations, Case Studies in Thermal Engineering, 1 (1), 38-44, 2013.
-
41. Farajollahi B., Etemad S.G., Hojjat M., Heat transfer of nanofluids in a shell and tube heat exchanger, International Journal of Heat and Mass Transfer, 53 (1-3), 12-17, 2010.
-
42. Farajollahi B., Etemad S.G, Pressure drop of nanofluid through a shell and tube heat exchanger, The 6th International Chemical Engineering Congress & Exhibition, Kish Island, Iran, 16-20 November 2009.
-
43. Kern D.Q., Process Heat Transfer, McGraw-Hill, New York, USA, 1950.
-
44. Shah R.K., London L., Laminar flow forced convection in ducts. In: Advances in Heat Transfer, Academic Press, New York, USA, 1978.
-
45. Ünverdi M., Küçük H., Yılmaz M. S., Mini-kanallı gövde borulu ısı değiştirici tasarımı ve ısınan-soğuyan gövde tarafı deneysel performanslarının karşılaştırılması, Tesisat Mühendisliği, 180, 7-29, 2020.
-
46. Kline S.J., McClintock F.A., Describing Uncertainties in Single-Sample Experiments, Mechanical Engineering, 75 (1), 3-8, 1953
-
47. Gnielinski V., New equations for heat and mass transfer in turbulent pipe and channel flow, International Chemical Engineering 16 (2), 359–368, 1976.
-
48. Hausen H., Neue Gleichungen fur die Wameiibertragung bei freier oder erzwungerner stromung, Allg Wärmetechnik, 9, 75–79, 1959.
-
49. Sinnott, R.K., Chemical Engineering Design: Chemical Engineering, Volume 6, Butterworth-Heinemann, Oxford, UK, 2005.
-
50. Ünverdi, M., Prediction of heat transfer coefficient and friction factor of mini channel shell and tube heat exchanger using numerical analysis and experimental validation, International Journal of Thermal Sciences, 171, 107182, 2022.
Bir gövde borulu ısı değiştiricide mini kanal ve akış düzenlemesinin termohidrolik performansa etkilerinin deneysel incelenmesi
Yıl 2025,
Cilt: 40 Sayı: 3, 2029 - 2046, 21.08.2025
Murat Ünverdi
,
Mehmet Senan Yılmaz
,
Hasan Küçük
Öz
Doğal biyolojik yapılarda karşılaşılan mini kanallar (MKlar), teknolojik uygulamalarda yaygınlaşmaktadır. MKlarla ısı ve kütle geçişi sistemlerinde kompaktlık artırılarak boyut, hacim ve aracı akışkan miktarı azaltılabilmektedir. MKlarla ısı geçişinin iyileştirilmesi amacıyla gövde borulu mini kanallı ısı değiştiricide (GB-MK-ID) zıt yönlü ve aynı yönlü (paralel) akış düzenlemeleriyle toplam ısı geçiş katsayısındaki (TIGK) ve basınç düşümündeki değişimler deneysel araştırılmıştır. Ayrıca GB-MK-IDnin deneysel sonuçları literatürden gövde borulu ısı değiştiricilerin (GB-ID) deneysel sonuçlarıyla karşılaştırılmıştır. Bunun yanı sıra performans indeksiyle () GB-MK-IDnin işletme limitleri belirlenmiştir. Zıt yönlü TIGKları 1750-3950 W/m2K aralığında değişirken, aynı yönlü deneysel TIGKları 1270-3675 W/m2K aralığında değişmektedir. GB-MK-IDnin TIGKları literatürdeki GB-IDlere göre ortalama %25 daha yüksektir. Ancak MK kullanmak basınç düşümlerini artmıştır. GB-MK-IDnin performans indeksine göre işletme limitleri 5000
Kaynakça
-
1. Kandlikar S., Garimella S., Li D., Colin S., King M. R., Heat Transfer and Fluid Flow in Minichannels and Microchannels, Butterworth-Heinemann, Oxford, UK, 2014.
-
2. Kandlikar S. G., Steinke M. E., Examples of microchannel mass transfer processes in biological systems, Proceedings of First International Conference on Minichannels and Microchannels. ASME, Rochester, NY, 933-943, April 24-25, 2003.
-
3. Yu Z.-Q., Li M.-T., Cao B.-Y., A comprehensive review on microchannel heat sinks for electronics cooling, International Journal of Extreme Manufacturing, 6 (2), 022005, 2024.
-
4. Wadekar V. V., Heat exchangers in process industry and mini-and microscale heat transfer, Proceedings of Fifth International Conference on Enhanced, Compact and Ultra-Compact Heat Exchangers: Science, Engineering and Technology, Hoboken, NJ, USA, 318-322, September, 2005.
-
5. Mehendale S. S., Jacobi A. M., Shah R. K., Fluid flow and heat transfer at micro-and meso-scales with applications to heat exchanger design, Applied Mechanics Reviews, 53 (7), 175–193, 2000.
-
6. Kandlikar S. G., Grande W. J., Evolution of microchannel flow passages—thermohydraulic performance and fabrication technology, Heat Transfer Engineering, 24 (1), 3-1, 2003.
-
7. Kakac S., Liu H., Pramuanjaroenkij A., Heat Exchangers Selection, Rating, and Thermal Design, CRC Press, New York, USA, 2020.
-
8. Kandlikar S.G., A Roadmap for Implementing Minichannels in Refrigeration and Air-Conditioning Systems—Current Status and Future Directions, Heat Transfer Engineering, 28 (12), 973–985, 2007.
-
9. Van de Bor D. M., Mini-channel heat exchangers for industrial distillation processes, Doktora Tezi, Delft/Netherlands University of Technology, Delft, 2014.
-
10. Hesselgreaves J. E., Law R., Reay D. A., Compact Heat Exchangers Selection, Design and Operation, Butterworth-Heinemann, Oxford, UK, 2017.
-
11. Sekulić D. P., Shah R. K., Fundamentals of Heat Exchanger Design, John Wiley & Sons, Hoboken, USA, 2024.
-
12. Cui P., Yang W., Zhang W., Zhu K., Spitler J. D., Yu M., Advances in ground heat exchangers for space heating and cooling: Review and perspectives, Energy and Built Environment, 5 (2), 255-269, 2024.
-
13. Ko Y. M., Song J. Y., Lee J. W., Sohn S., Song C. H., Khoshvaght-Aliabadi, M., ... & Kang, Y. T., A critical review on Colburn j-factor and f-factor and energy performance analysis for finned tube heat exchangers, Energy, 287, 129609, 2024.
-
14. Yılmaz R., Özbalta N., Investigation of the thermal-hydraulic properties of a l-footed spiral finned tube heat exchanger and derivation of new empirical correlations, Journal of the Faculty of Engineering and Architecture of Gazi University, 40 (2), 1357–1370, 2025.
-
15. Tekin Y., Bilgili M., Numerical and experimental investigation of fin height effect in plug-in modules cooled by direct airflow through method, Journal of the Faculty of Engineering and Architecture of Gazi University, 39 (4), 2617–2630, 2024.
-
16. Aljashaami B. A., Ali B. M., Salih S. A., Alwan N. T., Majeed M. H., Ali O. M., ... & Shcheklein S. E., Recent improvements to heating, ventilation, and cooling technologies for buildings based on renewable energy to achieve zero-energy buildings: A systematic review, Results in Engineering, 102769, 2024.
-
17. Daadoua M., Mathew B., Alnaimat F., Experimental investigation of pressure drop and heat transfer in minichannel with smooth and pin fin surfaces, International Journal of Thermofluids, 21, 100542, 2024.
-
18. Shin J. S., Kim M. H., An experimental study of flow condensation heat transfer in-side circular and rectangular mini-channels, Heat Transfer Engineering, 26, 36–44, 2005.
-
19. Dutkowski K., Two-phase pressure drop of air-water in minichannels, International Journal of Heat and Mass Transfer, 52, 5185–5192, 2009.
-
20. Bilen K., Erdoğan İ., Özgüç F., Yoğuşma konusundaki literatüre genel bakış, Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 40 (1), 713–748, 2024.
-
21. Col D. D., Cavallini A., Da Riva E., Mancin S., Censi G., Shell-and-Tube Minichannel Condenser for Low Refrigerant Charge, Heat Transfer Engineering 31 (6), 509–517, 2010.
-
22. Hejcik J., Jicha M., Single phase heat transfer in minichannels, EPJ Web of Conference 67, 02034, 2014.
-
23. Trang N.V., Trung D.T., Dzung D.V., Experimental study of alternative minichannel heat exchanger for scooter radiator, International Journal of Emerging Research in Management & Technology, 6 (4), 46–50, 2017.
-
24. Thulukkanam K., Heat exchanger design handbook, Volume I, CRC Press, New York, USA, 2024.
-
25. Ünverdi M., Küçük H., Yılmaz M. S., Nanoakışkanların enerji verimliliğine etkileri: mini kanallı gövde borulu ısı değiştiricide soğuyan nanoakışkanların deneysel performans incelemesi, Isı Bilimi ve Tekniği Dergisi, 44 (2), 259-279, 2024.
-
26. Çengel Y.A., Ghajar A.J Heat and mass transfer: fundamentals and applications, McGraw-Hill, New York, USA, 2020.
-
27. Hassaan A.M., An investigation for the performance of the using of nanofluids in shell and tube heat exchanger, International Journal of Thermal Sciences, 177, 107569, 2022.
-
28. Dhinesh Kumar D., Arasu A. V., Experimental investigation on dimensionless numbers and heat transfer in nanocompositefluid shell and tube heat exchanger, Thermal Analysis and Calorimetry, 143, 1537-1553, 2021.
-
29. Karimi S., Heyhat M.M., Isfahani A.H.M., Hosseinian A., Experimental investigation of convective heat transfer and pressure drop of SiC/water nanofluid in a shell and tube heat exchanger, Heat Mass Transfer, 56 (8), 2325–2331, 2020.
-
30. Salem M.R., Experimental investigation on the hydrothermal attributes of MWCNT/water nanofluid in the shell-side of shell and semi-circular tubes heat exchanger, Applied Thermal Engineering, 176, 115438, 2020.
-
31. Sameer S., Prakash S.B., Ganesha T., Narayana S.G., Study on effectiveness using copper oxide nanofluid in shell and tube heat exchanger, International Journal of Engineering Trends and Technology, 68 (12), 1-9, 2020.
-
32. Fares M., Mohammad, A. M., Mohammed, A. S., Heat transfer analysis of a shell and tube heat exchanger operated with graphene nanofluids, Case Studies in Thermal Engineering, 18, 100584, 2020.
-
33. Sajjad M., Ali H., Kamran M.S., Thermal-hydraulic analysis of water based ZrO2 nanofluids in segmental baffled shell and tube heat exchangers, Thermal Science, 24 (2 Part B), 1195-1205, 2020.
-
34. Sivamani S., Murugan M., Venkatesan H., Premkumar M., Effect of flow rates on segmental baffle shell and tube heat exchanger using CuO-W nanofluids, World Journal of Engineering, 17 (1), 115–126, 2020.
-
35. Barzegarian R., Aloueyan A., Yousefi T., Thermal performance augmentation using water based Al2O3-gamma nanofluid in a horizontal shell and tube heat exchanger under forced circulation, International Communications in Heat and Mass Transfer, 86, 52-59, 2017.
-
36. Nallusamy S., Manikanda Prabu N., Heat Transfer Enhancement analysis of Al2O3-Water nanofluid through parallel and counter flow in shell and tube heat exchangers, International Journal of Nanoscience, 16, 1750020, 2017.
-
37. Kabeel A.E., Abdelgaied M., Overall heat transfer coefficient and pressure drop in a typical tubular exchanger employing alumina nano-fluid as the tube side hot fluid, Heat and Mass Transfer, 52, 1417-1424, 2016.
-
38. Godson L., Deepak K., Enoch C., Raja B.R.J., Raja B., Heat transfer characteristics of silver/water nanofluids in a shell and tube heat exchanger, Archives of Civil and Mechanical Engineering, 14, 489-496, 2014.
-
39. Shahrul, I. M., Mahbubul, I. M., Saidur, R., Sabri, M. F. M., Experimental investigation on Al2O3–W, SiO2–W and ZnO–W nanofluids and their application in a shell and tube heat exchanger, International Journal of Heat and Mass Transfer, 97, 547-558, 2016.
-
40. Albadr J., Tayal S., Alasadi M., Heat transfer through heat exchanger using Al2O3 nanofluid at different concentrations, Case Studies in Thermal Engineering, 1 (1), 38-44, 2013.
-
41. Farajollahi B., Etemad S.G., Hojjat M., Heat transfer of nanofluids in a shell and tube heat exchanger, International Journal of Heat and Mass Transfer, 53 (1-3), 12-17, 2010.
-
42. Farajollahi B., Etemad S.G, Pressure drop of nanofluid through a shell and tube heat exchanger, The 6th International Chemical Engineering Congress & Exhibition, Kish Island, Iran, 16-20 November 2009.
-
43. Kern D.Q., Process Heat Transfer, McGraw-Hill, New York, USA, 1950.
-
44. Shah R.K., London L., Laminar flow forced convection in ducts. In: Advances in Heat Transfer, Academic Press, New York, USA, 1978.
-
45. Ünverdi M., Küçük H., Yılmaz M. S., Mini-kanallı gövde borulu ısı değiştirici tasarımı ve ısınan-soğuyan gövde tarafı deneysel performanslarının karşılaştırılması, Tesisat Mühendisliği, 180, 7-29, 2020.
-
46. Kline S.J., McClintock F.A., Describing Uncertainties in Single-Sample Experiments, Mechanical Engineering, 75 (1), 3-8, 1953
-
47. Gnielinski V., New equations for heat and mass transfer in turbulent pipe and channel flow, International Chemical Engineering 16 (2), 359–368, 1976.
-
48. Hausen H., Neue Gleichungen fur die Wameiibertragung bei freier oder erzwungerner stromung, Allg Wärmetechnik, 9, 75–79, 1959.
-
49. Sinnott, R.K., Chemical Engineering Design: Chemical Engineering, Volume 6, Butterworth-Heinemann, Oxford, UK, 2005.
-
50. Ünverdi, M., Prediction of heat transfer coefficient and friction factor of mini channel shell and tube heat exchanger using numerical analysis and experimental validation, International Journal of Thermal Sciences, 171, 107182, 2022.