Araştırma Makalesi
BibTex RIS Kaynak Göster

Kapalı hacim ı̇çerisı̇ndekı̇ bir elektronı̇k kartın hesaplamalı akışkanlar dinamiği, ı̇letim-tabanlı sonlu elemanlar ve deneysel yöntemlerle parametrı̇k olarak termal açıdan ı̇ncelenmesi

Yıl 2025, Cilt: 40 Sayı: 4, 2757 - 2771, 31.12.2025
https://doi.org/10.17341/gazimmfd.1658873

Öz

Elektronik elemanlar; otomotiv, havacılık, bilişim, ev eşyaları, sağlık vb. gibi endüstrinin birçok alanında yoğun olarak kullanılmaktadır. Sistemlerin güvenilirliği elektronik ünitelerin güvenilirliğine doğrudan bağlı olduğu için elektronik elemanların ısıl yönetimi zorunludur. Bir elektronik sistemin ısıl davranışını incelemek için bazı yaygın yöntemler mevcuttur. Bunlardan biri, en yaygın ve uygun prosedür izlendiği takdirde en güvenilir yöntem olan deneysel yöntemdir. Diğer bir yöntem ise Hesaplamalı Akışkanlar Dinamiği (HAD) analizidir. Bir diğer sayısal yöntem ise iletim-tabanlı Sonlu Elemanlar Yöntemidir (SEY). Bu çalışmada, üzerinde iki adet ısı yayan komponentin bulunduğu bir elektronik kartın kapalı bir hacim içerisinde doğal taşınım altında zamana bağımlı ısıl davranışı farklı sınır koşulları altında HAD, iletim-tabanlı SEY ve deneysel yöntemler kullanılarak incelenmiştir. Öncelikle iki farklı sınır koşulu için deneyler gerçekleştirilmiştir. Deney sonuçları kullanılarak HAD ve iletim-tabanlı SEY analiz modelleri doğrulanmıştır. Daha sonra, beş farklı senaryo için HAD ve iletim-tabanlı SEY analizleri gerçekleştirilmiştir. HAD analizlerinin sonuçları, elektronik kart ve komponentler üzerinde seçilen noktaların zamana bağımlı sıcaklık değişimi, sıcaklık ve basıncın kontur grafikleri ve farklı anlar için farklı kesitlerde kapalı hacim içindeki havanın hız dağılımı olarak sunulmuştur. Seçilen noktalar için HAD ve iletim-tabanlı SEY analizlerinden elde edilen zamana bağımlı sıcaklık değişimleri karşılaştırılmıştır. Sonuçlar arasındaki farklar yaklaşık 70-100°C sıcaklık mertebesi için %10'dan düşük kalmaktadır.

Kaynakça

  • 1. Ocak M., Conduction-based Compact Thermal Modeling For Thermal Analysis of Electronic Components, Yüksek Lisans Tezi, Orta Doğu Teknik Üniversitesi, Fen Bilimleri Enstitüsü, Ankara, 2010.
  • 2. Eveloy V., Rodgers P., Prediction of electronic component-board transient conjugate heat transfer, IEEE Transactions on Components and Packaging Technologies, 28 (4), 817–829, 2005.
  • 3. Byon C., Choo K., Kim S. J., Experimental and analytical study on chip hot spot temperature, International Journal of Heat and Mass Transfer, 54 (9-10), 2066–2072, 2011.
  • 4. Lira E., Greenlee C., Thermal Analysis and Testing of Missile Avionics Systems, AIAA Thermophysics Conference, Miami, ABD, 2007.
  • 5. Joshy S., Jellesen M., Ambat R., Effect of interior geometry on local climate inside an electronic device enclosure, 16th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), Orlando, ABD, 30 Mayıs – 2 Haziran 2017.
  • 6. Peneklioğlu K., Bilen K., Investigation of cooling an electric vehicle battery module using water by considering effect of contact resistance, Journal of the Faculty of Engineering and Architecture of Gazi University, 39 (4), 2587-2599, 2024.
  • 7. Tekin Y., Bilgili M., Numerical and experimental investigation of fin height effect in plug-in modules cooled by direct airflow through method, Journal of the Faculty of Engineering and Architecture of Gazi University, 39 (4), 2617-2630, 2024.
  • 8. Devellioğlu Y., Electronic Packaging and Environmental Test and Analysis of an Emi Shield Electronic Unit for Naval Platform, Yüksek Lisans Tezi, Orta Doğu Teknik Üniversitesi, Fen Bilimleri Enstitüsü, Ankara, 2008
  • 9. Cheng H.C., Ciou W.R., Chen W.H., Kuo J.L., Lu H.C., Wu R.B., Heat dissipation analysis and design of a board-level phased-array transmitter module for 60-GHz communication, Applied Thermal Engineering, 53 (1), 78–88, 2013.
  • 10. Cheng H.C., Chen W.H., Cheng H.F., Theoretical and experimental characterization of heat dissipation in a board-level microelectronic component, Applied Thermal Engineering, 28 (5-6), 575–588, 2008. 11. Chen W.H., Cheng H.C., Shen H.A., An effective methodology for thermal characterization of electronic packaging, IEEE Transactions on Components and Packaging Technologies, 26 (1), 222–232, 2003.
  • 12. Zahn B.A., Stout R.P., Evaluation of isothermal and isoflux natural convection coefficient correlations for utilization in electronic package level thermal analysis, Thirteenth Annual IEEE Semiconductor Thermal Measurement and Management Symposium, Austin, ABD, 27-30 Ocak 1997.
  • 13. Xu G., Multi-core server processors thermal analysis. 16th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), Orlando, ABD, 30 Mayıs – 2 Haziran 2017.
  • 14. Stancato F., Santos L., Pustelnik M., Electronic Package Cooling Analysis in an Aircraft Using CFD, AeroTech Congress & Exhibition, EMBRAER, 2017.
  • 15. Eveloy V., Rodgers P., Lohan J., Comparison of numerical predictions and experimental measurements for the transient thermal behavior of a board-mounted electronic component, Eighth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, 36–45, San Diego, ABD, 30 Mayıs – 1 Haziran 2002.
  • 16. Han C.K., Jung H., A study on thermal behavior prediction for automotive electronics unit based on CFD, 23rd International Workshop on Thermal Investigations of ICs and Systems (THERMINIC), Amsterdam, Hollanda, 27-29 Eylül 2017.
  • 17. Rodgers P., Eveloy V., Lohan J., Fager C.M., Tiilikka P., Rantala J., Experimental validation of numerical heat transfer predictions for single and multi-component printed circuit boards in natural convection environments, Fifteenth Annual IEEE Semiconductor Thermal Measurement and Management Symposium, 54–64, San Diego, ABD, 9-11 Mart 1999.
  • 18. Taliyan S.S., Sakar S., Kumar M., Finite element based thermal analysis of sealed electronic rack and validation, 2nd International Conference on Reliability, Safety and Hazard, 443–447, Mumbai, Hindistan, 14-16 Aralık 2010.
  • 19. Chavan S., Sathe A., Natural Convection Cooling of Electronic Enclosure, International Journal of Trend in Research and Development, 3 (4), 93–97, 2016.
  • 20. Pang Y.F., Assessment of Thermal Behavior and Development of Thermal Design Guidelines for Integrated Power Electronics Modules, Doktora Tezi, Virginia Polytechnic Institute and State University, Virginia, 2005.
  • 21. Rosten H.I., Addison J.D., Viswanath R., Davies M., Fitzgerald E., Development, validation and application of a thermal model of a plastic quad flat pack, 45th Electronic Components & Technology Conference, 1140–1151, Las Vegas, ABD, 21-24 Mayıs 1995.
  • 22. Deng Q.H., Fluid flow and heat transfer characteristics of natural convection in square cavities due to discrete source–sink pairs, International Journal of Heat and Mass Transfer, 51 (25-26), 5949–5957, 2008.
  • 23. Khatamifar M., Lin W., Armfield S., Holmes D., Kirkpatrick M., Conjugate natural convection heat transfer in a partitioned differentially-heated square cavity, International Communications in Heat and Mass Transfer, 81, 92-103, 2017.
  • 24. Zaman F.S., Turja T.S., Molla M.M., Buoyancy Driven Natural Convection Flow in an Enclosure with Two Discrete Heating from below, Procedia Engineering, 56, 104–111, 2013.
  • 25. Nogueira R.M., Martins M.A., Ampessan F., Natural Convection In Rectangular Cavities With Different Aspect Ratios, Revista De Engenharia Térmica, 10 (1-2), 44, 2011.
  • 26. Steinberg D.S., Cooling techniques for electronic equipment, John Wiley&Sons, New York: Wiley, 1991.
  • 27. Ellison G.N., Thermal computations for electronics: conductive, radiative, and convective air cooling, CRC Press/Taylor & Francis Group, 2020.
  • 28. Gilmore D.G., Donabedian M., Spacecraft thermal control handbook. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2003.
  • 29. Usul Y., Kapalı hacim içerisindeki elektronik kartların termal davranışının deneysel ve nümerik olarak araştırılması, Yüksek Lisans Tezi, Gazi Üniversitesi, Fen Bilimleri Enstitüsü, Makine Mühendisliği Ana Bilim Dalı, Ankara, 2021.
  • 30. Aljabaır M.E.S., Imran A.A., Heat Transfer Enhancement of Electronic Devices by Using Flexible Printed Circuit Boards, Journal of Thermal Engineering, 8 (3), 1234–1245, 2022.
  • 31. Korobkov M., Vasilyev F., Mozharov V., A Comparative Analysis of Printed Circuit Boards with Surface-Mounted and Embedded Components under Natural and Forced Convection, Micromachines, 13 (4), 634, 2022.
  • 32. Oh H., Taylor R., Numerical Modeling of Forced Air Convection for Thermal Management in Automotive ECU: A Component and System-Level Study, ASME InterPACK Conference, IPACK2023-110688, 2023.
  • 33. Sueza Raffa L., Ryall M., Cairns I., Bennett N.S., Clemon L., Investigating the performance of a heat sink for satellite avionics thermal management: From ground-level testing to space-like conditions, International Journal of Heat and Mass Transfer, 248, 127139, 2025.

Parametric thermal investigation of an electronic board in an enclosure by computational fluid dynamics, conduction-based finite element and experimental methods

Yıl 2025, Cilt: 40 Sayı: 4, 2757 - 2771, 31.12.2025
https://doi.org/10.17341/gazimmfd.1658873

Öz

Electronic components are used extensively in many fields of industry such as automotive, aerospace, IT, household appliances, health, etc. Since the reliability of systems is directly dependent on the reliability of electronic units, thermal management of electronic components is mandatory. There are some common methods to study the thermal behavior of an electronic system. One of them is the experimental method, which is the most common and the most reliable method if the proper procedure is followed. Another method is Computational Fluid Dynamics (CFD) analysis. Another numerical method is the conduction-based Finite Element Method (FEM). In this study, the time-dependent thermal behavior of an electronic board with two heat-dissipating components in an enclosure under natural convection is investigated using CFD, conduction-based FEA, and experimental methods under different boundary conditions. Firstly, experiments were carried out for two different boundary conditions. CFD and conduction-based FEM analysis models are validated using the experimental results. Afterward, CFD and conduction-based FEM analyses are performed for five different scenarios. The results of CFD analyses are presented as time-dependent temperature variations of selected locations on the electronic board and components, contour plots of temperature and pressure, and velocity distribution of air inside the closed volume at different cross-sections for different moments. The time-dependent temperature variations obtained from CFD and conduction-based FEM analyses are compared for the selected points. The differences between the results are less than 10% for the temperature range of about 70-100°C.

Kaynakça

  • 1. Ocak M., Conduction-based Compact Thermal Modeling For Thermal Analysis of Electronic Components, Yüksek Lisans Tezi, Orta Doğu Teknik Üniversitesi, Fen Bilimleri Enstitüsü, Ankara, 2010.
  • 2. Eveloy V., Rodgers P., Prediction of electronic component-board transient conjugate heat transfer, IEEE Transactions on Components and Packaging Technologies, 28 (4), 817–829, 2005.
  • 3. Byon C., Choo K., Kim S. J., Experimental and analytical study on chip hot spot temperature, International Journal of Heat and Mass Transfer, 54 (9-10), 2066–2072, 2011.
  • 4. Lira E., Greenlee C., Thermal Analysis and Testing of Missile Avionics Systems, AIAA Thermophysics Conference, Miami, ABD, 2007.
  • 5. Joshy S., Jellesen M., Ambat R., Effect of interior geometry on local climate inside an electronic device enclosure, 16th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), Orlando, ABD, 30 Mayıs – 2 Haziran 2017.
  • 6. Peneklioğlu K., Bilen K., Investigation of cooling an electric vehicle battery module using water by considering effect of contact resistance, Journal of the Faculty of Engineering and Architecture of Gazi University, 39 (4), 2587-2599, 2024.
  • 7. Tekin Y., Bilgili M., Numerical and experimental investigation of fin height effect in plug-in modules cooled by direct airflow through method, Journal of the Faculty of Engineering and Architecture of Gazi University, 39 (4), 2617-2630, 2024.
  • 8. Devellioğlu Y., Electronic Packaging and Environmental Test and Analysis of an Emi Shield Electronic Unit for Naval Platform, Yüksek Lisans Tezi, Orta Doğu Teknik Üniversitesi, Fen Bilimleri Enstitüsü, Ankara, 2008
  • 9. Cheng H.C., Ciou W.R., Chen W.H., Kuo J.L., Lu H.C., Wu R.B., Heat dissipation analysis and design of a board-level phased-array transmitter module for 60-GHz communication, Applied Thermal Engineering, 53 (1), 78–88, 2013.
  • 10. Cheng H.C., Chen W.H., Cheng H.F., Theoretical and experimental characterization of heat dissipation in a board-level microelectronic component, Applied Thermal Engineering, 28 (5-6), 575–588, 2008. 11. Chen W.H., Cheng H.C., Shen H.A., An effective methodology for thermal characterization of electronic packaging, IEEE Transactions on Components and Packaging Technologies, 26 (1), 222–232, 2003.
  • 12. Zahn B.A., Stout R.P., Evaluation of isothermal and isoflux natural convection coefficient correlations for utilization in electronic package level thermal analysis, Thirteenth Annual IEEE Semiconductor Thermal Measurement and Management Symposium, Austin, ABD, 27-30 Ocak 1997.
  • 13. Xu G., Multi-core server processors thermal analysis. 16th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), Orlando, ABD, 30 Mayıs – 2 Haziran 2017.
  • 14. Stancato F., Santos L., Pustelnik M., Electronic Package Cooling Analysis in an Aircraft Using CFD, AeroTech Congress & Exhibition, EMBRAER, 2017.
  • 15. Eveloy V., Rodgers P., Lohan J., Comparison of numerical predictions and experimental measurements for the transient thermal behavior of a board-mounted electronic component, Eighth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, 36–45, San Diego, ABD, 30 Mayıs – 1 Haziran 2002.
  • 16. Han C.K., Jung H., A study on thermal behavior prediction for automotive electronics unit based on CFD, 23rd International Workshop on Thermal Investigations of ICs and Systems (THERMINIC), Amsterdam, Hollanda, 27-29 Eylül 2017.
  • 17. Rodgers P., Eveloy V., Lohan J., Fager C.M., Tiilikka P., Rantala J., Experimental validation of numerical heat transfer predictions for single and multi-component printed circuit boards in natural convection environments, Fifteenth Annual IEEE Semiconductor Thermal Measurement and Management Symposium, 54–64, San Diego, ABD, 9-11 Mart 1999.
  • 18. Taliyan S.S., Sakar S., Kumar M., Finite element based thermal analysis of sealed electronic rack and validation, 2nd International Conference on Reliability, Safety and Hazard, 443–447, Mumbai, Hindistan, 14-16 Aralık 2010.
  • 19. Chavan S., Sathe A., Natural Convection Cooling of Electronic Enclosure, International Journal of Trend in Research and Development, 3 (4), 93–97, 2016.
  • 20. Pang Y.F., Assessment of Thermal Behavior and Development of Thermal Design Guidelines for Integrated Power Electronics Modules, Doktora Tezi, Virginia Polytechnic Institute and State University, Virginia, 2005.
  • 21. Rosten H.I., Addison J.D., Viswanath R., Davies M., Fitzgerald E., Development, validation and application of a thermal model of a plastic quad flat pack, 45th Electronic Components & Technology Conference, 1140–1151, Las Vegas, ABD, 21-24 Mayıs 1995.
  • 22. Deng Q.H., Fluid flow and heat transfer characteristics of natural convection in square cavities due to discrete source–sink pairs, International Journal of Heat and Mass Transfer, 51 (25-26), 5949–5957, 2008.
  • 23. Khatamifar M., Lin W., Armfield S., Holmes D., Kirkpatrick M., Conjugate natural convection heat transfer in a partitioned differentially-heated square cavity, International Communications in Heat and Mass Transfer, 81, 92-103, 2017.
  • 24. Zaman F.S., Turja T.S., Molla M.M., Buoyancy Driven Natural Convection Flow in an Enclosure with Two Discrete Heating from below, Procedia Engineering, 56, 104–111, 2013.
  • 25. Nogueira R.M., Martins M.A., Ampessan F., Natural Convection In Rectangular Cavities With Different Aspect Ratios, Revista De Engenharia Térmica, 10 (1-2), 44, 2011.
  • 26. Steinberg D.S., Cooling techniques for electronic equipment, John Wiley&Sons, New York: Wiley, 1991.
  • 27. Ellison G.N., Thermal computations for electronics: conductive, radiative, and convective air cooling, CRC Press/Taylor & Francis Group, 2020.
  • 28. Gilmore D.G., Donabedian M., Spacecraft thermal control handbook. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2003.
  • 29. Usul Y., Kapalı hacim içerisindeki elektronik kartların termal davranışının deneysel ve nümerik olarak araştırılması, Yüksek Lisans Tezi, Gazi Üniversitesi, Fen Bilimleri Enstitüsü, Makine Mühendisliği Ana Bilim Dalı, Ankara, 2021.
  • 30. Aljabaır M.E.S., Imran A.A., Heat Transfer Enhancement of Electronic Devices by Using Flexible Printed Circuit Boards, Journal of Thermal Engineering, 8 (3), 1234–1245, 2022.
  • 31. Korobkov M., Vasilyev F., Mozharov V., A Comparative Analysis of Printed Circuit Boards with Surface-Mounted and Embedded Components under Natural and Forced Convection, Micromachines, 13 (4), 634, 2022.
  • 32. Oh H., Taylor R., Numerical Modeling of Forced Air Convection for Thermal Management in Automotive ECU: A Component and System-Level Study, ASME InterPACK Conference, IPACK2023-110688, 2023.
  • 33. Sueza Raffa L., Ryall M., Cairns I., Bennett N.S., Clemon L., Investigating the performance of a heat sink for satellite avionics thermal management: From ground-level testing to space-like conditions, International Journal of Heat and Mass Transfer, 248, 127139, 2025.
Toplam 32 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Makine Mühendisliği (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Yener Usul 0000-0002-1087-4743

Şenol Başkaya 0000-0001-9676-4387

Tamer Çalışır 0000-0002-0721-0444

Bülent Acar Bu kişi benim 0000-0003-1992-0555

Gönderilme Tarihi 17 Mart 2025
Kabul Tarihi 13 Eylül 2025
Yayımlanma Tarihi 31 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 40 Sayı: 4

Kaynak Göster

APA Usul, Y., Başkaya, Ş., Çalışır, T., Acar, B. (2025). Kapalı hacim ı̇çerisı̇ndekı̇ bir elektronı̇k kartın hesaplamalı akışkanlar dinamiği, ı̇letim-tabanlı sonlu elemanlar ve deneysel yöntemlerle parametrı̇k olarak termal açıdan ı̇ncelenmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 40(4), 2757-2771. https://doi.org/10.17341/gazimmfd.1658873
AMA Usul Y, Başkaya Ş, Çalışır T, Acar B. Kapalı hacim ı̇çerisı̇ndekı̇ bir elektronı̇k kartın hesaplamalı akışkanlar dinamiği, ı̇letim-tabanlı sonlu elemanlar ve deneysel yöntemlerle parametrı̇k olarak termal açıdan ı̇ncelenmesi. GUMMFD. Aralık 2025;40(4):2757-2771. doi:10.17341/gazimmfd.1658873
Chicago Usul, Yener, Şenol Başkaya, Tamer Çalışır, ve Bülent Acar. “Kapalı hacim ı̇çerisı̇ndekı̇ bir elektronı̇k kartın hesaplamalı akışkanlar dinamiği, ı̇letim-tabanlı sonlu elemanlar ve deneysel yöntemlerle parametrı̇k olarak termal açıdan ı̇ncelenmesi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 40, sy. 4 (Aralık 2025): 2757-71. https://doi.org/10.17341/gazimmfd.1658873.
EndNote Usul Y, Başkaya Ş, Çalışır T, Acar B (01 Aralık 2025) Kapalı hacim ı̇çerisı̇ndekı̇ bir elektronı̇k kartın hesaplamalı akışkanlar dinamiği, ı̇letim-tabanlı sonlu elemanlar ve deneysel yöntemlerle parametrı̇k olarak termal açıdan ı̇ncelenmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 40 4 2757–2771.
IEEE Y. Usul, Ş. Başkaya, T. Çalışır, ve B. Acar, “Kapalı hacim ı̇çerisı̇ndekı̇ bir elektronı̇k kartın hesaplamalı akışkanlar dinamiği, ı̇letim-tabanlı sonlu elemanlar ve deneysel yöntemlerle parametrı̇k olarak termal açıdan ı̇ncelenmesi”, GUMMFD, c. 40, sy. 4, ss. 2757–2771, 2025, doi: 10.17341/gazimmfd.1658873.
ISNAD Usul, Yener vd. “Kapalı hacim ı̇çerisı̇ndekı̇ bir elektronı̇k kartın hesaplamalı akışkanlar dinamiği, ı̇letim-tabanlı sonlu elemanlar ve deneysel yöntemlerle parametrı̇k olarak termal açıdan ı̇ncelenmesi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 40/4 (Aralık2025), 2757-2771. https://doi.org/10.17341/gazimmfd.1658873.
JAMA Usul Y, Başkaya Ş, Çalışır T, Acar B. Kapalı hacim ı̇çerisı̇ndekı̇ bir elektronı̇k kartın hesaplamalı akışkanlar dinamiği, ı̇letim-tabanlı sonlu elemanlar ve deneysel yöntemlerle parametrı̇k olarak termal açıdan ı̇ncelenmesi. GUMMFD. 2025;40:2757–2771.
MLA Usul, Yener vd. “Kapalı hacim ı̇çerisı̇ndekı̇ bir elektronı̇k kartın hesaplamalı akışkanlar dinamiği, ı̇letim-tabanlı sonlu elemanlar ve deneysel yöntemlerle parametrı̇k olarak termal açıdan ı̇ncelenmesi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, c. 40, sy. 4, 2025, ss. 2757-71, doi:10.17341/gazimmfd.1658873.
Vancouver Usul Y, Başkaya Ş, Çalışır T, Acar B. Kapalı hacim ı̇çerisı̇ndekı̇ bir elektronı̇k kartın hesaplamalı akışkanlar dinamiği, ı̇letim-tabanlı sonlu elemanlar ve deneysel yöntemlerle parametrı̇k olarak termal açıdan ı̇ncelenmesi. GUMMFD. 2025;40(4):2757-71.