Sekans etiketleme bir giriş dizisine karşılık bir çıkış dizisinin üretimidir. Giriş ve çıkış dizisinin içeriklerine göre doğal dil işlemenin birçok konusu (varlık isim tanıma, makine çevirisi, morfolojik analiz, cümleleri öğelerine ayırma vb.) sekans etiketleme olarak tanımlanabilir.
Bağlılık ayrıştırması, bir cümle içerisindeki sözcükler arasındaki ilişkilerin ve ilişki türlerinin belirlenmesidir ve bir cümlenin anlamsal analizinin yapılabilmesi için şarttır. Bağlılık ayrıştırması sekans etiketleme problemi olarak tanımlandığında iki çıkış dizisinin (ilişki türü, ilişkili kelime) birden üretilmesi gerekmektedir.
Bizim önerimiz, özellikle Sekans etiketleme problemlerinin çözümünde sıklıkla kullanılan Şartlı Rastgele Alanların bağlılık ayrıştırması problemi içinde kullanılabilir olduğudur. Ancak Şartlı Rastgele Alanlar tek çıkış üreten bir yöntemdir. Bu zorluğu aşabilmek için iki çıkışlı (Bağlılık Türü ve Bağlanılan Kelime) bir problem olan Bağlılık Ayrıştırması iki parçaya bölünerek çözülmüştür. Ardından elde edilen sonuçlar birleştirilerek sistemin çıktısı olarak verilmiştir. Gerçekleştirilen bu çalışma ile Türkçe için en yüksek bağlılık ayrıştırması sonuçlarına ulaşılmıştır.
Optimizasyon Sekans Etiketleme Bağlılık Ayrıştırması Şartlı Rastgele Alanlar Makine Öğrenmesi Doğal Dil İşleme
Bölüm | Makaleler |
---|---|
Yazarlar | |
Yayımlanma Tarihi | 13 Haziran 2017 |
Gönderilme Tarihi | 4 Mart 2016 |
Yayımlandığı Sayı | Yıl 2017 |