Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2017, , 1035 - 1050, 08.12.2017
https://doi.org/10.17341/gazimmfd.369354

Öz

Kaynakça

  • 1. Morman J.J., Literature review of the aerodynamics of flapping flight in micro air vehicle applications, Yüksek Lisans Tezi, North Dakota State University, Mechanical Engineering, North Dakota, 2014.
  • 2. Gerdes J.W., Design, Analysis, and testing of a flapping wing miniature air vehicle, Yüksek Lisans Tezi, University of Maryland, Faculty of the Graduate School, Maryland, 2010.
  • 3. Pourtakdoust S.H., Aliabadi S.K., Evaluation of flapping wing propulsion based on a new experimentally validated aeroelastic model, Scientia Iranica, 19 (3), 472-482, 2012.
  • 4. Hsu C.K., Evans J., Vytla S., Huang P., Development of flapping wing micro air vehicles-design, CFD, experiment and actual flight, In 48th AIAA Aerospace Sciences Meeting, Florida, 4-7, 2010.
  • 5. Lin C.S., Hwu C., Young W.B., The thrust and lift of an ornitopter's membrane wings with simple flapping motion, Aerospace Science and Technology, 10 (2), 111-119, 2006.
  • 6. Mukherjee S., Sanghi S., Design of a six-link mechanism for a micro air vehicle, Defence Science Journal, 54 (3), 271-276, 2004.
  • 7. Tsai B.J., Fu Y.C., Design and aerodynamic analysis of a flapping-wing micro aerial vehicle, Aerospace Science and Technology, 13 (7), 383-392, 2009.
  • 8. Karakaş F., Paça O., Köse C., Son O., Zaloğlu B., Fenercioğlu İ., Çetiner O., Çırpan kanatta kanat profilinin etkisi, Journal of Aeronautics and Space Technologies, 7 (2), 55-70, 2014.
  • 9. Liu L., Zhang X., He Z., Aerodynamic analysis and wind tunnel test for flapping-wing mavs, Journal of Theoretical and Applied Information Technology, 45 (2), 542-550, 2012.
  • 10. Shyy W., Aono H., Chimakurthi S.K., Trizila P., Kang C.K., Cesnik C.E., Liu H., Recent progress in flapping wing aerodynamics and aero elasticity, Progress in Aerospace Sciences, 46 (7), 284-327, 2010.
  • 11. Ermeydan A., Kiyak E., Fault tolerant flight control system design to a rotary wing aircraft, Journal of the Faculty of Engineering and Architecture of Gazi University, 32 (1), 21-34, 2017.
  • 12. Nguyen Q.V., Chan W.L., Debiasi M., Hybrid design and performance tests of a hovering insect-inspired flapping-wing micro aerial vehicle, Journal of Bionic Engineering, 13, 235–248, 2016.
  • 13. Tay W.B., Symmetrical and non-symmetrical 3D wing deformation of flapping micro aerial vehicles, Aerospace Science and Technology, 55, 242–251, 2016.
  • 14. Goel M.D., Rawat U., Design and analysis of wing structures of micro air vehicles, In Procedia Engineering, 173, 1602-1610, 2017.
  • 15. Sai K.P.P.M., Bharadwaj K., Design, fabrication and testing of flapping wing micro air vehicle, Int. Journal of Engineering Research and Applications, 6 (1), 133-150, 2016.
  • 16. Şenol M.G., Arıkan K.B., Kurtuluş D.F., Dört çubuk mekanizmalı çırpan kanatlı hava aracı yapımı, analizi ve testleri, VI. Ulusal Havacılık ve Uzay Konferansı, Kocaeli Üniversitesi, 2016. 17. Hu H., Kumar A.G., Abate G., Albertani R., An experimental investigation on the aerodynamic performances of flexible membrane wings in flapping flight., Aerospace Science and Technology, 14 (8), 575-586, 2010.
  • 18. Hu H., Kumar A.G., Abate G., Albertani R., An experimental study of flexible membrane wings in flapping flight, 47th AIAA aerospace sciences meeting including the new horizons forum and aerospace exposition, Florida, 2009 19. Yafeng Z., Zhanke L., Wenping S., Bifeng S., Lift and thrust characteristics of the flapping wing micro air vehicle, 27th International Congress of the Aeronautical Sciences, Nice, 2010.
  • 20. Rose C., Fearing R.S., Comparison of ornithopter wind tunnel force measurements with free flight, Robotics and Automation (ICRA), Hong Kong, 2014.
  • 21. Shkarayev S., Silin D., Aerodynamics of flapping-wing micro air vehicles, 47th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Florida, 2009.
  • 22. Shkarayev S., Silin, D., Measurements of aerodynamic coefficients for flapping wings at 0-90 angles of attack, AIAA Journal, 50 (10), 2034-2042, 2012.
  • 23. Valiyff A., Harvey J.R., Jones M.B., Henbest S.M., Palmer J.L., Analysis of ornitopter-wing aerodynamics, 17th Australasian Fluid Mechanics Conference, Auckland, 2010.
  • 24. Jones M.B., Valiyff A., Harvey J., Flexibility of an ornitopter wing tested in a wind tunnel, 28th International Congress of the Aeronautical Sciences, Australia, 2012.
  • 25. Nakata T., Liu H., Tanaka Y., Nishihashi N., Wang X., Sato A., Aerodynamics of a bio-inspired flexible flapping-wing micro air vehicle, Bioinspiration & Biomimetics, 6 (4), 1-11, 2011.
  • 26. Anbarcı K., Investigation of flow field around flapping wings, Yüksek Lisans Tezi, Istanbul Technical University, Institute of Science and Technology, Istanbul, 2007.
  • 27. Wu P., Experimental characterization, design, analysis and optimızation of flexible flapping wings for micro air vehicles, Doktora Tezi, The University of Florida, Florida, 2010.
  • 28. Nguyen Q.V., Park H.C., Goo N.S., Byun D., Flapping performance and simulation of an insect-mimicking flapper actuated by a compressed unimorph piezoelectric composite actuator, 15th International Symposium on: Smart Structures and Materials & Nondestructive Evaluation and Health Monitoring, San Diego, 2008.
  • 29. Kim D.K., Kim H.I., Han J.H., Kwon K.J., Experimental investigation on the aerodynamic characteristics of a bio-mimetic flapping wing with macro-fiber composites, Journal of Intelligent Material Systems and Structures, 19 (3), 423-431, 2007.
  • 30. Yeo D., Atkins E., Shyy W., Aerodynamic sensing as feedback for ornitopter flight control, 49th AIAA Aerospace Sciences Meeting, Florida, 2011.
  • 31. Grauer J., Ulrich E., Hubbard J., Pines D., Humbert S., Model structure determination of an ornitopter aerodynamics model from flight data, 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Florida, 2010.
  • 32. Mazaheri K., Ebrahimi A., Experimental investigation on aerodynamic performance of a flapping wing vehicle in forward flight, Journal of Fluids and Structures, 27 (4), 586-595, 2011.
  • 33. Şahin İ., Acır A., Numerical and experimental investigations of lift and drag performances of NACA 0015 wind turbine airfoil, International Journal of Materials, Mechanics and Manufacturing, 3 (1), 22-25, 2015.
  • 34. Mazaheri K., Ebrahimi A., Experimental study on interaction of aerodynamics with flexible wings of flapping vehicles in hovering and cruise flight, Archive of Applied Mechanics, 80 (11), 1255-1269, 2010.
  • 35. Harmon R.L., Aerodynamic modeling of a flapping membrane wing using motion tracking experiments, Yüksek Lisans Tezi, University of Maryland, Maryland, 2008.
  • 36. Saygı M.I., Kare model etrafındaki akışın üfleme ve emme ile aktif kontrolünde hücum açısının ve slot kanal konumunun etkisinin deneysel incelenmesi, Yüksek Lisans Tezi, Niğde Üniversitesi, Niğde, 2011.

Çırpan kanadın aerodinamik parametrelerinin deneysel olarak incelenmesi

Yıl 2017, , 1035 - 1050, 08.12.2017
https://doi.org/10.17341/gazimmfd.369354

Öz

İnsansız
hava araçlarının kullanım alanlarının artması bu alanda yapılan çalışmaların
sayısını artırmıştır. İnsansız hava araçlarının daha küçük modelleri olan mikro
hava araçları sivil ve askeri birçok alanda kullanılmaktadır. Mikro hava
araçları temel olarak sabit, döner ve çırpan kanatlı olarak üçe ayrılır. Bu
çalışmada incelenen çırpan kanatlı hava araçlarının en önemli avantajı, itki
kuvvetinin kanatların çırpma hareketi sonucu oluşur ve böylece harici bir itki
sistemine ihtiyaç duyulmaz. Bu çalışmanın amacı çırpan kanatlardaki daimi
olmayan akışı rüzgâr tünelinde deneysel olarak incelemektir. Çalışma kapsamında
bir çırpan kanat mekanizması oluşturulmuş ve farklı malzemelerden üretilen
kanatlar çırpma hareketi yaparken farklı hava hızı, hücum açısı ve çırpma
frekanslarındaki aerodinamik parametreleri incelenmiştir. Elde edilen sonuçlara
göre; yüksek hava hızı ve hücum açılarında taşıma kuvveti artarken, sürtünmenin
artmasından dolayı itki kuvveti azalmaktadır. Yüksek çırpma frekanslarında itki
kuvveti artarken taşıma kuvveti azalmıştır. Malzeme açısından
değerlendirilirse, naylon ve lateks kanadın itki kuvvetlerinin ahşap kanattan
daha iyi olduğu tespit edilmiştir.

Kaynakça

  • 1. Morman J.J., Literature review of the aerodynamics of flapping flight in micro air vehicle applications, Yüksek Lisans Tezi, North Dakota State University, Mechanical Engineering, North Dakota, 2014.
  • 2. Gerdes J.W., Design, Analysis, and testing of a flapping wing miniature air vehicle, Yüksek Lisans Tezi, University of Maryland, Faculty of the Graduate School, Maryland, 2010.
  • 3. Pourtakdoust S.H., Aliabadi S.K., Evaluation of flapping wing propulsion based on a new experimentally validated aeroelastic model, Scientia Iranica, 19 (3), 472-482, 2012.
  • 4. Hsu C.K., Evans J., Vytla S., Huang P., Development of flapping wing micro air vehicles-design, CFD, experiment and actual flight, In 48th AIAA Aerospace Sciences Meeting, Florida, 4-7, 2010.
  • 5. Lin C.S., Hwu C., Young W.B., The thrust and lift of an ornitopter's membrane wings with simple flapping motion, Aerospace Science and Technology, 10 (2), 111-119, 2006.
  • 6. Mukherjee S., Sanghi S., Design of a six-link mechanism for a micro air vehicle, Defence Science Journal, 54 (3), 271-276, 2004.
  • 7. Tsai B.J., Fu Y.C., Design and aerodynamic analysis of a flapping-wing micro aerial vehicle, Aerospace Science and Technology, 13 (7), 383-392, 2009.
  • 8. Karakaş F., Paça O., Köse C., Son O., Zaloğlu B., Fenercioğlu İ., Çetiner O., Çırpan kanatta kanat profilinin etkisi, Journal of Aeronautics and Space Technologies, 7 (2), 55-70, 2014.
  • 9. Liu L., Zhang X., He Z., Aerodynamic analysis and wind tunnel test for flapping-wing mavs, Journal of Theoretical and Applied Information Technology, 45 (2), 542-550, 2012.
  • 10. Shyy W., Aono H., Chimakurthi S.K., Trizila P., Kang C.K., Cesnik C.E., Liu H., Recent progress in flapping wing aerodynamics and aero elasticity, Progress in Aerospace Sciences, 46 (7), 284-327, 2010.
  • 11. Ermeydan A., Kiyak E., Fault tolerant flight control system design to a rotary wing aircraft, Journal of the Faculty of Engineering and Architecture of Gazi University, 32 (1), 21-34, 2017.
  • 12. Nguyen Q.V., Chan W.L., Debiasi M., Hybrid design and performance tests of a hovering insect-inspired flapping-wing micro aerial vehicle, Journal of Bionic Engineering, 13, 235–248, 2016.
  • 13. Tay W.B., Symmetrical and non-symmetrical 3D wing deformation of flapping micro aerial vehicles, Aerospace Science and Technology, 55, 242–251, 2016.
  • 14. Goel M.D., Rawat U., Design and analysis of wing structures of micro air vehicles, In Procedia Engineering, 173, 1602-1610, 2017.
  • 15. Sai K.P.P.M., Bharadwaj K., Design, fabrication and testing of flapping wing micro air vehicle, Int. Journal of Engineering Research and Applications, 6 (1), 133-150, 2016.
  • 16. Şenol M.G., Arıkan K.B., Kurtuluş D.F., Dört çubuk mekanizmalı çırpan kanatlı hava aracı yapımı, analizi ve testleri, VI. Ulusal Havacılık ve Uzay Konferansı, Kocaeli Üniversitesi, 2016. 17. Hu H., Kumar A.G., Abate G., Albertani R., An experimental investigation on the aerodynamic performances of flexible membrane wings in flapping flight., Aerospace Science and Technology, 14 (8), 575-586, 2010.
  • 18. Hu H., Kumar A.G., Abate G., Albertani R., An experimental study of flexible membrane wings in flapping flight, 47th AIAA aerospace sciences meeting including the new horizons forum and aerospace exposition, Florida, 2009 19. Yafeng Z., Zhanke L., Wenping S., Bifeng S., Lift and thrust characteristics of the flapping wing micro air vehicle, 27th International Congress of the Aeronautical Sciences, Nice, 2010.
  • 20. Rose C., Fearing R.S., Comparison of ornithopter wind tunnel force measurements with free flight, Robotics and Automation (ICRA), Hong Kong, 2014.
  • 21. Shkarayev S., Silin D., Aerodynamics of flapping-wing micro air vehicles, 47th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Florida, 2009.
  • 22. Shkarayev S., Silin, D., Measurements of aerodynamic coefficients for flapping wings at 0-90 angles of attack, AIAA Journal, 50 (10), 2034-2042, 2012.
  • 23. Valiyff A., Harvey J.R., Jones M.B., Henbest S.M., Palmer J.L., Analysis of ornitopter-wing aerodynamics, 17th Australasian Fluid Mechanics Conference, Auckland, 2010.
  • 24. Jones M.B., Valiyff A., Harvey J., Flexibility of an ornitopter wing tested in a wind tunnel, 28th International Congress of the Aeronautical Sciences, Australia, 2012.
  • 25. Nakata T., Liu H., Tanaka Y., Nishihashi N., Wang X., Sato A., Aerodynamics of a bio-inspired flexible flapping-wing micro air vehicle, Bioinspiration & Biomimetics, 6 (4), 1-11, 2011.
  • 26. Anbarcı K., Investigation of flow field around flapping wings, Yüksek Lisans Tezi, Istanbul Technical University, Institute of Science and Technology, Istanbul, 2007.
  • 27. Wu P., Experimental characterization, design, analysis and optimızation of flexible flapping wings for micro air vehicles, Doktora Tezi, The University of Florida, Florida, 2010.
  • 28. Nguyen Q.V., Park H.C., Goo N.S., Byun D., Flapping performance and simulation of an insect-mimicking flapper actuated by a compressed unimorph piezoelectric composite actuator, 15th International Symposium on: Smart Structures and Materials & Nondestructive Evaluation and Health Monitoring, San Diego, 2008.
  • 29. Kim D.K., Kim H.I., Han J.H., Kwon K.J., Experimental investigation on the aerodynamic characteristics of a bio-mimetic flapping wing with macro-fiber composites, Journal of Intelligent Material Systems and Structures, 19 (3), 423-431, 2007.
  • 30. Yeo D., Atkins E., Shyy W., Aerodynamic sensing as feedback for ornitopter flight control, 49th AIAA Aerospace Sciences Meeting, Florida, 2011.
  • 31. Grauer J., Ulrich E., Hubbard J., Pines D., Humbert S., Model structure determination of an ornitopter aerodynamics model from flight data, 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Florida, 2010.
  • 32. Mazaheri K., Ebrahimi A., Experimental investigation on aerodynamic performance of a flapping wing vehicle in forward flight, Journal of Fluids and Structures, 27 (4), 586-595, 2011.
  • 33. Şahin İ., Acır A., Numerical and experimental investigations of lift and drag performances of NACA 0015 wind turbine airfoil, International Journal of Materials, Mechanics and Manufacturing, 3 (1), 22-25, 2015.
  • 34. Mazaheri K., Ebrahimi A., Experimental study on interaction of aerodynamics with flexible wings of flapping vehicles in hovering and cruise flight, Archive of Applied Mechanics, 80 (11), 1255-1269, 2010.
  • 35. Harmon R.L., Aerodynamic modeling of a flapping membrane wing using motion tracking experiments, Yüksek Lisans Tezi, University of Maryland, Maryland, 2008.
  • 36. Saygı M.I., Kare model etrafındaki akışın üfleme ve emme ile aktif kontrolünde hücum açısının ve slot kanal konumunun etkisinin deneysel incelenmesi, Yüksek Lisans Tezi, Niğde Üniversitesi, Niğde, 2011.
Toplam 34 adet kaynakça vardır.

Ayrıntılar

Bölüm Makaleler
Yazarlar

İlker Yılmaz 0000-0001-7956-7752

Sinan Keiyinci Bu kişi benim

Ömer Çam

Adem Karcı

Yayımlanma Tarihi 8 Aralık 2017
Gönderilme Tarihi 21 Nisan 2016
Kabul Tarihi 19 Temmuz 2017
Yayımlandığı Sayı Yıl 2017

Kaynak Göster

APA Yılmaz, İ., Keiyinci, S., Çam, Ö., Karcı, A. (2017). Çırpan kanadın aerodinamik parametrelerinin deneysel olarak incelenmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 32(4), 1035-1050. https://doi.org/10.17341/gazimmfd.369354
AMA Yılmaz İ, Keiyinci S, Çam Ö, Karcı A. Çırpan kanadın aerodinamik parametrelerinin deneysel olarak incelenmesi. GUMMFD. Aralık 2017;32(4):1035-1050. doi:10.17341/gazimmfd.369354
Chicago Yılmaz, İlker, Sinan Keiyinci, Ömer Çam, ve Adem Karcı. “Çırpan kanadın Aerodinamik Parametrelerinin Deneysel Olarak Incelenmesi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 32, sy. 4 (Aralık 2017): 1035-50. https://doi.org/10.17341/gazimmfd.369354.
EndNote Yılmaz İ, Keiyinci S, Çam Ö, Karcı A (01 Aralık 2017) Çırpan kanadın aerodinamik parametrelerinin deneysel olarak incelenmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 32 4 1035–1050.
IEEE İ. Yılmaz, S. Keiyinci, Ö. Çam, ve A. Karcı, “Çırpan kanadın aerodinamik parametrelerinin deneysel olarak incelenmesi”, GUMMFD, c. 32, sy. 4, ss. 1035–1050, 2017, doi: 10.17341/gazimmfd.369354.
ISNAD Yılmaz, İlker vd. “Çırpan kanadın Aerodinamik Parametrelerinin Deneysel Olarak Incelenmesi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 32/4 (Aralık 2017), 1035-1050. https://doi.org/10.17341/gazimmfd.369354.
JAMA Yılmaz İ, Keiyinci S, Çam Ö, Karcı A. Çırpan kanadın aerodinamik parametrelerinin deneysel olarak incelenmesi. GUMMFD. 2017;32:1035–1050.
MLA Yılmaz, İlker vd. “Çırpan kanadın Aerodinamik Parametrelerinin Deneysel Olarak Incelenmesi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, c. 32, sy. 4, 2017, ss. 1035-50, doi:10.17341/gazimmfd.369354.
Vancouver Yılmaz İ, Keiyinci S, Çam Ö, Karcı A. Çırpan kanadın aerodinamik parametrelerinin deneysel olarak incelenmesi. GUMMFD. 2017;32(4):1035-50.