Beyin tümörlerinden kaynaklı insan ölümleri günümüzde artmaktadır. Beyin tümörü çok hızlı büyüyerek, normal boyutunun iki katına çıkabilir. Bu yüzden uzmanlar, Manyetik Rezonans (MR) görüntülerini inceleme sürecini hızlı bir şekilde yapmalıdır. Bu adım kanser tanısında, tedavi planlamasında ve tedavi sonucunun değerlendirilmesinde hayati öneme sahiptir. Beyninde tümör olan hasta doğru ve hızlı tedavi edilmezse, hastanın hayatta kalma şansı azalır ve bu durum hastanın ölümüne neden olabilir. Bu makalede, beyin MR görüntülerinden tümörü kolayca tespit eden ve tümörün yerini belirten, uzmanlara yardımcı olabilecek bilgisayar destekli otomatik tümör tespit sistemi geliştirilmiştir. Geliştirilen sistem derin öğrenme mimarilerinden olan Bölgesel tabanlı Evrişimsel Sinir Ağları (BESA) tabanlıdır. BESA, Evrişimsel Sinir Ağları (ESA) mimarisini kullanan bir yapı olmakla birlikte giriş görüntüsüne ek olarak ilgilenilen bölgenin de giriş olarak verildiği bir yapı olarak düşünülebilir. Önerilen metot içerisinde farklı BESA mimarileri tasarlanarak Benchmark, Rembredant ve Harvard veri setleri üzerinde test edilmiştir. Elde edilen en yüksek doğruluk değeri %99.10 ile BESA4 mimarisi ve Benchmark veri setinden elde edilmiştir. En yüksek ortalama doğruluk ise yine BESA4 mimarisi ile %98.66 olarak hesaplanmıştır. Ayrıca, önerilen yöntemin başarımı, literatürdeki bazı yöntemler ile kıyaslanmıştır. Kıyaslamalar da önerilen yöntemin daha başarılı olduğu görülmüştür.
Biyomedikal görüntüleme beyin tümör tespiti; derin öğrenme; bölgesel tabanlı evrişimsel sinir ağları
Birincil Dil | Türkçe |
---|---|
Konular | Mühendislik |
Bölüm | Makaleler |
Yazarlar | |
Yayımlanma Tarihi | 29 Mayıs 2019 |
Gönderilme Tarihi | 20 Şubat 2018 |
Yayımlandığı Sayı | Yıl 2019 |