Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2020, , 607 - 618, 25.12.2019
https://doi.org/10.17341/gazimmfd.493102

Öz

Kaynakça

  • 1. Frahm, H., Device for damped vibration of bodies, US Patent no: 989958, 30 October, 1909.
  • 2. Ormondroyd, J., Den Hartog, J.P., The theory of the dynamic vibration absorber, Transactions of the American Society of Mechanical Engineers, 50, 9-22, 1928.
  • 3. Den Hartog, J.P, , Mechanical Vibrations, McGraw-Hill, New York, 1956.
  • 4. Marano, G.C., Greco, R., Chiaia, B., A comparison between different optimization criteria for tuned mass dampers design, Journal of Sound Vibration, 329, 4880-4890, 2010.
  • 5. Leung, A.Y.T., Zhang, H., Particle swarm optimization of tuned mass dampers, Engineering Structures, 31, 715-728, 2009
  • 6. Farshidianfar, A., Soheili, S., Ant colony optimization of tuned mass dampers for earthquake oscillations of high-rise structures including soil-structure interaction, Soil Dynamics and Earthquake Engineering, 51, 14-22, 2013.
  • 7. Moghaddas, M., Esmailzadeh, E., Sedaghati, R., Khosravi, P., Vibration control of Timoshenko beam traversed by moving vehicle using optimized tuned mass damper, Journal of Vibration and Control, 18(6), 757-773, 2012.
  • 8. Araz, O., Kahya, V., Effects of manufacturing type on control performance of multiple tuned mass dampers under harmonic excitation, Journal of Structural Engineering & Applied Mechanics, 1(3), 117-127, 2018.
  • 9. Bekdas, G., Nigdeli, S.M., Mass ratio factor for optimum tuned mass damper strategies, International Journal of Mechanical Sciences, 71, 68-84, 2013.10. Cheung, Y.L., Wong, W.O., H∞ and H2 optimizations of dynamic vibration absorber for suppressing vibrations in plates, Journal of Sound Vibration, 320, 29-42, 2009.
  • 11. Luu, M., Zabel, V., Könke, C., An optimization method of multi-resonant response of high-speed train bridges using TMDs, Finite Elements in Analysis and Design, 53, 13-23, 2012.
  • 12. Bandivadekar, T.P., Jangid, R.S., Optimization of multiple tuned mass dampers for vibration control of system under external excitation, Journal of Vibration and Control, 19(12), 1854-1871, 2012.
  • 13. Kwon, H.C., Kim, M.C., Lee, I.W., Vibration control of bridges under moving loads, Computers & Structures, 66(4), 473-480, 1998.
  • 14. Jo, B.W., Tae, G.H., Lee, D.W., Structural vibration of tuned mass damper-installed three-span steel box bridge, International Journal of Pressure Vessels and Piping, 78, 667-675, 2001.
  • 15. Chen, Y.H., Chen, D.S., Timoshenko beam with tuned mass dampers to moving loads, Journal of Bridge Engineering, 9(2), 167-177, 2004.
  • 16. Wu, J.J., Study on the inertia effect of helical spring of the absorber on suppressing the dynamic responses of a beam subjected to a moving load, Journal of Sound Vibration, 297, 981-999, 2006.
  • 17. Xu, K. ve Igusa, T., Dynamic Characteristics of Multiple Substructures with Closely Spaced Frequencies, Earthquake Engineering and Structural Dynamics, 21, 12, 1059-1070, 1992.
  • 18. Lin, C.C., Wang, J.F., Chen, B.L., Train-induced vibration control of high-speed railway bridges equipped with multiple tuned mass dampers, Journal of Bridge Engineering, 10(4), 398-414, 2005.
  • 19. Wang, H., Tao, T., Cheng, H. ve He, X., Simulation Study on Train-Induced Vibration Control of a Long-Span Steel Truss Girder Bridge by Tuned Mass Dampers, Mathematical Problems in Engineering, 2014, 1-12, 2014.
  • 20. Rostam, M., R., Javid, F., Esmailzadeh, E. ve Younesian, D., Vibration Suppression of Curved Beams Traversed by off-center Moving Loads, Journal of Sound and Vibration, 352, 1-15, 2015.
  • 21. Debnath, N., Deb, S., K. ve Dutta, A., Multi-Modal Vibration Control of Truss Bridges with Tuned Mass Dampers under General Loading, Journal of Vibration and Control, 22, 20, 4121-4140, 2015.
  • 22. Miguel, L., F., F., Lopez, R., H., Torii, A., J., Miguel, L., F., F. ve Beck, A., T., Robust Design Optimization of TMDs in Vehicle-Bridge Coupled Vibration Problems, Engineering Structures, 126, 703-711, 2016.
  • 23. Kahya, V., Araz, O., Series tuned mass dampers in train-induced vibration control of railway bridges, Structural Engineering and Mechanics, 61(4), 453-461, 2017.
  • 24. Frýba, L., A rough assessment of railway bridges for high speed trains, Engineering Structures, 23, 548-556, 2001.

Yüksek hızlı demiryolu köprülerinde aşırı titreşimlerin azaltılmasında paralel bağlı ayarlı kütle sönümleyiciler için basit bir tasarım yöntemi

Yıl 2020, , 607 - 618, 25.12.2019
https://doi.org/10.17341/gazimmfd.493102

Öz

Bu çalışmada, birden fazla ayarlı kütle sönümleyicinin (AKS)
paralel bağlanmasıyla elde edilen çok parçalı ayarlı kütle sönümleyicilerin (ÇAKS)
optimum tasarım parametrelerinin elde edilmesini için basit bir yöntem
önerilmiştir. Yöntem, esasen Den Hartog tarafından tek parçalı AKS için
önerilen formüllerin ÇAKS sistemlerine genişletilmesidir. Önerilen metodun
etkinliğini göstermek için yüksek hızlı demiryolu köprülerinde uygulama yapılmıştır.
Ele alınan köprü, basit mesnetli
Euler-Bernoulli
kirişi olarak, tren ise bir dizi hareketli yükten meydana gelen kuvvet katarı olarak
modellenmiştir. Hareket denklemleri, Newmark metoduyla sayısal olarak
çözülmüştür.
Çalışmanın
sonuçları, önerilen yöntemle tasarlanan ÇAKS sistemlerinin yüksek hızlı
demiryolu köprülerinde rezonans titreşimlerinin azaltılmasında iyi bir
performans sergilediğini göstermiştir.

Kaynakça

  • 1. Frahm, H., Device for damped vibration of bodies, US Patent no: 989958, 30 October, 1909.
  • 2. Ormondroyd, J., Den Hartog, J.P., The theory of the dynamic vibration absorber, Transactions of the American Society of Mechanical Engineers, 50, 9-22, 1928.
  • 3. Den Hartog, J.P, , Mechanical Vibrations, McGraw-Hill, New York, 1956.
  • 4. Marano, G.C., Greco, R., Chiaia, B., A comparison between different optimization criteria for tuned mass dampers design, Journal of Sound Vibration, 329, 4880-4890, 2010.
  • 5. Leung, A.Y.T., Zhang, H., Particle swarm optimization of tuned mass dampers, Engineering Structures, 31, 715-728, 2009
  • 6. Farshidianfar, A., Soheili, S., Ant colony optimization of tuned mass dampers for earthquake oscillations of high-rise structures including soil-structure interaction, Soil Dynamics and Earthquake Engineering, 51, 14-22, 2013.
  • 7. Moghaddas, M., Esmailzadeh, E., Sedaghati, R., Khosravi, P., Vibration control of Timoshenko beam traversed by moving vehicle using optimized tuned mass damper, Journal of Vibration and Control, 18(6), 757-773, 2012.
  • 8. Araz, O., Kahya, V., Effects of manufacturing type on control performance of multiple tuned mass dampers under harmonic excitation, Journal of Structural Engineering & Applied Mechanics, 1(3), 117-127, 2018.
  • 9. Bekdas, G., Nigdeli, S.M., Mass ratio factor for optimum tuned mass damper strategies, International Journal of Mechanical Sciences, 71, 68-84, 2013.10. Cheung, Y.L., Wong, W.O., H∞ and H2 optimizations of dynamic vibration absorber for suppressing vibrations in plates, Journal of Sound Vibration, 320, 29-42, 2009.
  • 11. Luu, M., Zabel, V., Könke, C., An optimization method of multi-resonant response of high-speed train bridges using TMDs, Finite Elements in Analysis and Design, 53, 13-23, 2012.
  • 12. Bandivadekar, T.P., Jangid, R.S., Optimization of multiple tuned mass dampers for vibration control of system under external excitation, Journal of Vibration and Control, 19(12), 1854-1871, 2012.
  • 13. Kwon, H.C., Kim, M.C., Lee, I.W., Vibration control of bridges under moving loads, Computers & Structures, 66(4), 473-480, 1998.
  • 14. Jo, B.W., Tae, G.H., Lee, D.W., Structural vibration of tuned mass damper-installed three-span steel box bridge, International Journal of Pressure Vessels and Piping, 78, 667-675, 2001.
  • 15. Chen, Y.H., Chen, D.S., Timoshenko beam with tuned mass dampers to moving loads, Journal of Bridge Engineering, 9(2), 167-177, 2004.
  • 16. Wu, J.J., Study on the inertia effect of helical spring of the absorber on suppressing the dynamic responses of a beam subjected to a moving load, Journal of Sound Vibration, 297, 981-999, 2006.
  • 17. Xu, K. ve Igusa, T., Dynamic Characteristics of Multiple Substructures with Closely Spaced Frequencies, Earthquake Engineering and Structural Dynamics, 21, 12, 1059-1070, 1992.
  • 18. Lin, C.C., Wang, J.F., Chen, B.L., Train-induced vibration control of high-speed railway bridges equipped with multiple tuned mass dampers, Journal of Bridge Engineering, 10(4), 398-414, 2005.
  • 19. Wang, H., Tao, T., Cheng, H. ve He, X., Simulation Study on Train-Induced Vibration Control of a Long-Span Steel Truss Girder Bridge by Tuned Mass Dampers, Mathematical Problems in Engineering, 2014, 1-12, 2014.
  • 20. Rostam, M., R., Javid, F., Esmailzadeh, E. ve Younesian, D., Vibration Suppression of Curved Beams Traversed by off-center Moving Loads, Journal of Sound and Vibration, 352, 1-15, 2015.
  • 21. Debnath, N., Deb, S., K. ve Dutta, A., Multi-Modal Vibration Control of Truss Bridges with Tuned Mass Dampers under General Loading, Journal of Vibration and Control, 22, 20, 4121-4140, 2015.
  • 22. Miguel, L., F., F., Lopez, R., H., Torii, A., J., Miguel, L., F., F. ve Beck, A., T., Robust Design Optimization of TMDs in Vehicle-Bridge Coupled Vibration Problems, Engineering Structures, 126, 703-711, 2016.
  • 23. Kahya, V., Araz, O., Series tuned mass dampers in train-induced vibration control of railway bridges, Structural Engineering and Mechanics, 61(4), 453-461, 2017.
  • 24. Frýba, L., A rough assessment of railway bridges for high speed trains, Engineering Structures, 23, 548-556, 2001.
Toplam 23 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Volkan Kahya 0000-0003-1392-4483

Onur Araz 0000-0002-6218-0559

Yayımlanma Tarihi 25 Aralık 2019
Gönderilme Tarihi 6 Aralık 2018
Kabul Tarihi 30 Ağustos 2019
Yayımlandığı Sayı Yıl 2020

Kaynak Göster

APA Kahya, V., & Araz, O. (2019). Yüksek hızlı demiryolu köprülerinde aşırı titreşimlerin azaltılmasında paralel bağlı ayarlı kütle sönümleyiciler için basit bir tasarım yöntemi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 35(2), 607-618. https://doi.org/10.17341/gazimmfd.493102
AMA Kahya V, Araz O. Yüksek hızlı demiryolu köprülerinde aşırı titreşimlerin azaltılmasında paralel bağlı ayarlı kütle sönümleyiciler için basit bir tasarım yöntemi. GUMMFD. Aralık 2019;35(2):607-618. doi:10.17341/gazimmfd.493102
Chicago Kahya, Volkan, ve Onur Araz. “Yüksek hızlı Demiryolu köprülerinde aşırı titreşimlerin azaltılmasında Paralel bağlı Ayarlı kütle sönümleyiciler için Basit Bir tasarım yöntemi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 35, sy. 2 (Aralık 2019): 607-18. https://doi.org/10.17341/gazimmfd.493102.
EndNote Kahya V, Araz O (01 Aralık 2019) Yüksek hızlı demiryolu köprülerinde aşırı titreşimlerin azaltılmasında paralel bağlı ayarlı kütle sönümleyiciler için basit bir tasarım yöntemi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 35 2 607–618.
IEEE V. Kahya ve O. Araz, “Yüksek hızlı demiryolu köprülerinde aşırı titreşimlerin azaltılmasında paralel bağlı ayarlı kütle sönümleyiciler için basit bir tasarım yöntemi”, GUMMFD, c. 35, sy. 2, ss. 607–618, 2019, doi: 10.17341/gazimmfd.493102.
ISNAD Kahya, Volkan - Araz, Onur. “Yüksek hızlı Demiryolu köprülerinde aşırı titreşimlerin azaltılmasında Paralel bağlı Ayarlı kütle sönümleyiciler için Basit Bir tasarım yöntemi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 35/2 (Aralık 2019), 607-618. https://doi.org/10.17341/gazimmfd.493102.
JAMA Kahya V, Araz O. Yüksek hızlı demiryolu köprülerinde aşırı titreşimlerin azaltılmasında paralel bağlı ayarlı kütle sönümleyiciler için basit bir tasarım yöntemi. GUMMFD. 2019;35:607–618.
MLA Kahya, Volkan ve Onur Araz. “Yüksek hızlı Demiryolu köprülerinde aşırı titreşimlerin azaltılmasında Paralel bağlı Ayarlı kütle sönümleyiciler için Basit Bir tasarım yöntemi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, c. 35, sy. 2, 2019, ss. 607-18, doi:10.17341/gazimmfd.493102.
Vancouver Kahya V, Araz O. Yüksek hızlı demiryolu köprülerinde aşırı titreşimlerin azaltılmasında paralel bağlı ayarlı kütle sönümleyiciler için basit bir tasarım yöntemi. GUMMFD. 2019;35(2):607-18.