Araştırma Makalesi
BibTex RIS Kaynak Göster

1H-1, 2, 4-triazole-3-thiol modifiye altın elektrot kullanılarak fenolün elektrokimyasal davranışının incelenmesi ve voltametrik tayini

Yıl 2020, , 835 - 844, 25.12.2019
https://doi.org/10.17341/gazimmfd.543608

Öz

Bu çalışmada, 1H-1,2,4-triazole-3-thiol (T3T) ile altın (Au) elektrot yüzeyi
kaplanarak Au/T3T elektrodu hazırlanmıştır. Kaplama işlemi, dönüşümlü
voltametri (CV) yöntemi kullanılarak
1×10-3 mol L-1
T3T çözeltisi içerisinde, 0,1
V s-1 tarama hızıyla -0,8 V ile +1,5 V arasında, 30 çevrim
sayısı ile
gerçekleştirilmiştir. Hazırlanan Au/T3T elektrodu yüzeyinde dönüşümlü
voltametri (CV) ve diferansiyel puls voltametrisi (DPV) teknikleri kullanılarak
fenolün (Ph) elektrokimyasal davranışı incelenmiş ve DPV tekniği ile voltametrik
tayini gerçekleştirilmiştir. Au/T3T elektrodu ile Ph tayini için uygun olan destek elektrolit ve pH gibi
optimum çalışma şartları belirlenmiştir. En uygun destek elektrolit ortamının pH
1.0 HClO4 çözeltisi olduğu belirlenmiştir.
Au elektrot yüzeyinin T3T
ile modifiye edilmesiyle, fenolün yükseltgenme pikinin akım değerinde 3,41 kat
artış olduğu belirlenmiştir.
Au/T3T
modifiye elektrot ile Ph için çalışma aralığı
1,0´10-7–3,6´10-5
M ve gözlenebilme
sınırı (LOD) 1,2
´10-8
M olarak belirlenmiştir. Au/T3T elektrodunun Ph tayininde iyi bir tekrarlanabilirlik,
kararlılık ve seçiciliğe sahip olduğu tespit edilmiştir.
Modifiye
elektrotla, musluk suyunda standart ekleme yöntemi kullanarak düşük bağıl
standart sapma (BSS) ve iyi bir geri kazanım değerleri ile Ph tayini
gerçekleştirilmiştir. 

Kaynakça

  • KAYNAKLAR (REFERENCES)
  • [1] Aksu Z., Yener J., Investigation of the biosorption of phenol and monochlorinated phenols on the dried activated sludge, Process Biochemistry, 33 (6), 649-655, 1998.
  • [2] Yener J., Aksu, Z., The usage of dried activated sludge and fly ash wastes in phenol biosorption/adsorption: comparison with granular avtivated carbon, J. of Environmental Science and Health Part AToxic/ Hazardous Engineering, Substance and Environmental Engineering, 34 (9), 1777-1796, 1999.
  • [3] Çokay E., Şengül F., Toksik kirleticilerin ileri oksidasyon prosesleri ile arıtımı, DEÜ Mühendislik Fakültesi Fen ve Mühendislik Dergisi, 8 (2), 1-9, 2006.
  • [4] Agency for Toxic Substances and Disease Registry (ATSDR). Toxicological Profile for Phenol (Update). Public Health Service, U.S. Department of Health and Human Services, Atlanta, GA. 1998.
  • [5] Dede Ö. T., Sezer M., Aksu çayı su kalitesinin belirlenmesinde Kanada su kalitesi indeks (CWQI) modelinin uygulanması, Journal of the Faculty of Engineering and Architecture of Gazi University, 32 (3), 909-917, 2017.
  • [6] Emerson E., The condensation of aminoantipyrine. II. A new color test for phenolic compounds, The Journal of Organic Chemistry, 8 (5), 417-428, 1943.
  • [7] Tang G., Huang Y., Zhang T., Wang Q., Crommen J., Fillet M., Jiang Z., Determination of phenolic acids in extra virgin olive oil using supercritical fluid chromatography coupled with single quadrupole mass spectrometry, Journal of pharmaceutical and biomedical analysis, 157, 217-225, 2018.
  • [8] Luo X., Zheng H., Zhang Z., Wang M., Yang B., Huang L., Wang M., Cloud point extraction for simultaneous determination of 12 phenolic compounds by high performance liquid chromatography with fluorescence detection, Microchemical Journal, 137, 148-154, 2018.
  • [9] Luo X., Zheng H., Zhang Z., Wang M., Yang B., Huang L., Wang, M., Cloud point extraction for simultaneous determination of 12 phenolic compounds by high performance liquid chromatography with fluorescence detection, Microchemical Journal, 137, 148-154, 2018.
  • [10] Wei C., Huang Q. T., Hu S. R., Zhang H. Q., Zhang W. X., Wang Z. M., Zhu M., Dai P., Huang L., Simultaneous electrochemical determination of hydroquinone, catechol and resorcinol at Nafion/multiwalled carbon nanotubes/carbon dots/multi-walled carbon nanotubes modified glassy carbon electrode. Electrochim Acta 149, 237–244, 2014. https://doi.org/10.1016/j.electacta.2014.10.051
  • [11] Kaffash A., Zare H. R., Rostami K., Highly sensitive biosensing of phenol based on the adsorption of the phenol enzymatic oxidation product on the surface of an electrochemically reduced graphene oxide-modified electrode, Analytical Methods, 10 (23), 2731-2739, 2018.
  • [12] Merkyte V., Morozova K., Boselli E., Scampicchio M., Fast and simultaneous determination of antioxidant activity, total phenols and bitterness of red wines by a multichannel amperometric electronic tongue, Electroanalysis, 30(2), 314-319, 2018.
  • [13] Rocha D. P., Dornellas R. M., Cardoso R. M., Narciso L. C., Silva M. N., Nossol E., Munoz R. A., Chemically versus electrochemically reduced graphene oxide: improved amperometric and voltammetric sensors of phenolic compounds on higher roughness surfaces, Sensors and Actuators B: Chemical, 254, 701-708, 2018.
  • [14] Asan G., Çelikkan H., Askorbik asitin MoS2 esaslı elektrotla elektrokimyasal tayini, Journal of the Faculty of Engineering and Architecture of Gazi University, 32 (3), 617–625, 2017.
  • [15] Calam T. T., Hasdemir E., Application of 1, 6-hexanedithiol and 1-hexanethiol self-assembled monolayers on polycrystalline gold electrode for determination of Fe (II) using square wave voltammetry, Gazi University Journal of Science, 31 (1), 53-64, 2018.
  • [16] Uzun D., Gündüzalp A. B., Hasdemir E., Selective determination of dopamine in the presence of uric acid and ascorbic acid by N, N′-bis (indole-3-carboxaldimine)-1, 2-diaminocyclohexane thin film modified glassy carbon electrode by differential pulse voltammetry, Journal of Electroanalytical Chemistry, 747, 68-76, 2015.
  • [17] Danyıldız Z., Uzun D., Calam T. T., Hasdemir E., A voltammetric sensor based on glassy carbon electrode modified with 1H-1, 2, 4-triazole-3-thiol coating for rapid determination of trace lead ions in acetate buffer solution, Journal of Electroanalytical Chemistry, 805, 177-183, 2017.
  • [18] Karabiberoğlu Ş. U., Koçak Ç. C., Voltammetric determination of vanillin in commercial food products using overoxidized poly (pyrrole) film-modified glassy carbon electrodes, Turkish Journal of Chemistry 42 (2), 291-305, 2018.
  • [19] Wu W., Yang L., Zhao F., Zeng B., A vanillin electrochemical sensor based on molecularly imprinted poly (1-vinyl-3-octylimidazole hexafluoride phosphorus)− multi-walled carbon nanotubes@ polydopamine–carboxyl single-walled carbon nanotubes composite, Sensors and Actuators B: Chemical, 239, 481-487, 2017.
  • [20] Barsan M. M., Pinto E. M., Brett C. M., Electrosynthesis and electrochemical characterisation of phenazine polymers for application in biosensors, Electrochimica Acta, 53(11), 3973-3982, 2008.
  • [21] Nazari M., Kashanian S., Moradipour P., Maleki N., A novel fabrication of sensor using ZnO-Al2O3 ceramic nanofibers to simultaneously detect catechol and hydroquinone, Journal of Electroanalytical Chemistry, 812, 122-131, 2018.
  • [22] Laviron E., The use of linear potential sweep voltammetry and of ac voltammetry for the study of the surface electrochemical reaction of strongly adsorbed systems and of redox modified electrodes, J. Electroanal. Chem. 100, 263-270, 1979.
  • [23] Chen C., Chen W., Qian L., Gao Z., Determination of catechol by cetyltrimethylammonium bromide functionalized graphene modified electrode, Advances in Sciences and Engineering, 10 (1), 1-1, 2018.
  • [24] Nady H., El-Rabiei M. M., El-Hafez G. A., Electrochemical oxidation behavior of some hazardous phenolic compounds in acidic solution, Egyptian Journal of Petroleum, 26 (3), 669-678, 2017.
  • [25] Goulart L. A., Gonçalves R., Correa A. A., Pereira E. C., Mascaro L. H. Synergic effect of silver nanoparticles and carbon nanotubes on the simultaneous voltammetric determination of hydroquinone, catechol, bisphenol A and phenol, Microchimica Acta, 185 (1), 12, 2018.
  • [26] Zhao G. H, Tang Y. T, Liu M. C., Lei Y. Z.,Xiao X. E., Direct and simultaneous determination of phenol, hydroquinone and nitrophenol at borondoped diamond film electrode, Chinese Journal of Chemistry, 25, 1445–1450, 2007. https:// doi.org/10.1002/cjoc.200790267
  • [27] Hashemnia S., Khayatzadeh S., Hashemnia M., Electrochemical detection of phenolic compounds using composite film of multiwall carbon nanotube/surfactant/tyrosinase on a carbon paste electrode, J. Solid State Electrochem., 16:473–479, 2012. https://doi.org/10.1007/s10008-011-1355-2
  • [28] Shahbakhsh M., Noroozifar M., Poly (dopamine quinone-chromium (III) complex) microspheres as new modifier for simultaneous determination of phenolic compounds, Biosensors and Bioelectronics, 102, 439-448, 2018.
  • [29] Campuzano S., Serra B., Pedrero M., Villena F. J. M., Pingarrón J. M., Amperometric flow-injection determination of phenolic compounds at self-assembled monolayer-based tyrosinase biosensors, Analytica Chimica Acta, 494, 187–197, 2003.
  • [30] Tatli F., Uzun D., Calam T. T., Gündüzalp A. B., Hasdemir E., Preparation and characterization of 3‐[(1H‐1, 2, 4‐triazole‐3‐ylimino) methyl] naphtalene‐2‐ol film at the platinum surface for selective voltammetric determination of dopamine in the presence of uric acid and ascorbic acid, Surface and Interface Analysis, 51 (4), 475-483, 2019.

Investigation of the electrochemical behavior of phenol using 1H-1, 2, 4-triazole-3-thiol modified gold electrode and its voltammetric determination

Yıl 2020, , 835 - 844, 25.12.2019
https://doi.org/10.17341/gazimmfd.543608

Öz

In this study 1H-1,2,4-triazole-3-thiol (T3T) was deposited at the gold electrode to fabricate a new sensor and
used for the determination of phenol (Ph). Comparing with the bare Au and T3T modified Au (Au/T3T)
electrode, the Au/T3T electrode has higher catalytic activities towards the oxidation of Ph. Figure A shows
that electrode modification provided 3.41-fold increase at the precision.
Figure A. Differential pulse voltammograms of Ph on the Au and Au/T3T electrode at pH 1.0 in HClO4
solution (a), Possible oxidation mechanism of phenol (b).
Purpose: The aim of this study to develop a new and applicable sensor in real samples used for the
determination of phenol compound.
Theory and Methods:
Phenol is a kind of pollutant and it widely exists in water, atmosphere, chemical productions, and canned food.
The phenol is potentially fatal if ingested, inhaled and absorbed by skin and may cause severe burns and
influence kidney, liver and central nervous system. Therefore, determination of phenol is very important due
to its toxic and dangerous properties to enviromental and people’s health. The use of modified electrodes in
analytical applications has become an active research area in electrochemistry thanks to its low cost, rapid
response, low detection limit, selectivity and high precision. Modification of electrode surfaces with redoxactive organic molecules that contain heteroatom has an important process. Among the coating molecules on
electrode surfaces, triazole and its derivatives have been preferred because of their advantages of having high
redox activity and quietly good thermal stability.
Results:
The calibration curve and limit of detection (LOD) were obtained in the range of 1.0×10-7 – 3.6 ×10-5 mol L-1
and 1.2×10-8 mol L-1 on the Au/T3T modified electrode, respectively. The interference effects of various
anions, cations and compounds on this method were investigated. Besides, the reproducibility, repeatability,
and stability measurements were also assayed. In addition, the obtained electrode showed satisfactory results
when applied to the determination of Ph in tap water with low relative standart deviation values on the Au/T3T
modified electrode by standard addition method.
Conclusion:
This study has indicated that the T3T modified Au electrode exhibits highly electrocatalytic activity to Ph
oxidation at pH 1.0 in HClO4 solution. The prepared electrode was successfully used to the determination of
Ph in tap water.  

Kaynakça

  • KAYNAKLAR (REFERENCES)
  • [1] Aksu Z., Yener J., Investigation of the biosorption of phenol and monochlorinated phenols on the dried activated sludge, Process Biochemistry, 33 (6), 649-655, 1998.
  • [2] Yener J., Aksu, Z., The usage of dried activated sludge and fly ash wastes in phenol biosorption/adsorption: comparison with granular avtivated carbon, J. of Environmental Science and Health Part AToxic/ Hazardous Engineering, Substance and Environmental Engineering, 34 (9), 1777-1796, 1999.
  • [3] Çokay E., Şengül F., Toksik kirleticilerin ileri oksidasyon prosesleri ile arıtımı, DEÜ Mühendislik Fakültesi Fen ve Mühendislik Dergisi, 8 (2), 1-9, 2006.
  • [4] Agency for Toxic Substances and Disease Registry (ATSDR). Toxicological Profile for Phenol (Update). Public Health Service, U.S. Department of Health and Human Services, Atlanta, GA. 1998.
  • [5] Dede Ö. T., Sezer M., Aksu çayı su kalitesinin belirlenmesinde Kanada su kalitesi indeks (CWQI) modelinin uygulanması, Journal of the Faculty of Engineering and Architecture of Gazi University, 32 (3), 909-917, 2017.
  • [6] Emerson E., The condensation of aminoantipyrine. II. A new color test for phenolic compounds, The Journal of Organic Chemistry, 8 (5), 417-428, 1943.
  • [7] Tang G., Huang Y., Zhang T., Wang Q., Crommen J., Fillet M., Jiang Z., Determination of phenolic acids in extra virgin olive oil using supercritical fluid chromatography coupled with single quadrupole mass spectrometry, Journal of pharmaceutical and biomedical analysis, 157, 217-225, 2018.
  • [8] Luo X., Zheng H., Zhang Z., Wang M., Yang B., Huang L., Wang M., Cloud point extraction for simultaneous determination of 12 phenolic compounds by high performance liquid chromatography with fluorescence detection, Microchemical Journal, 137, 148-154, 2018.
  • [9] Luo X., Zheng H., Zhang Z., Wang M., Yang B., Huang L., Wang, M., Cloud point extraction for simultaneous determination of 12 phenolic compounds by high performance liquid chromatography with fluorescence detection, Microchemical Journal, 137, 148-154, 2018.
  • [10] Wei C., Huang Q. T., Hu S. R., Zhang H. Q., Zhang W. X., Wang Z. M., Zhu M., Dai P., Huang L., Simultaneous electrochemical determination of hydroquinone, catechol and resorcinol at Nafion/multiwalled carbon nanotubes/carbon dots/multi-walled carbon nanotubes modified glassy carbon electrode. Electrochim Acta 149, 237–244, 2014. https://doi.org/10.1016/j.electacta.2014.10.051
  • [11] Kaffash A., Zare H. R., Rostami K., Highly sensitive biosensing of phenol based on the adsorption of the phenol enzymatic oxidation product on the surface of an electrochemically reduced graphene oxide-modified electrode, Analytical Methods, 10 (23), 2731-2739, 2018.
  • [12] Merkyte V., Morozova K., Boselli E., Scampicchio M., Fast and simultaneous determination of antioxidant activity, total phenols and bitterness of red wines by a multichannel amperometric electronic tongue, Electroanalysis, 30(2), 314-319, 2018.
  • [13] Rocha D. P., Dornellas R. M., Cardoso R. M., Narciso L. C., Silva M. N., Nossol E., Munoz R. A., Chemically versus electrochemically reduced graphene oxide: improved amperometric and voltammetric sensors of phenolic compounds on higher roughness surfaces, Sensors and Actuators B: Chemical, 254, 701-708, 2018.
  • [14] Asan G., Çelikkan H., Askorbik asitin MoS2 esaslı elektrotla elektrokimyasal tayini, Journal of the Faculty of Engineering and Architecture of Gazi University, 32 (3), 617–625, 2017.
  • [15] Calam T. T., Hasdemir E., Application of 1, 6-hexanedithiol and 1-hexanethiol self-assembled monolayers on polycrystalline gold electrode for determination of Fe (II) using square wave voltammetry, Gazi University Journal of Science, 31 (1), 53-64, 2018.
  • [16] Uzun D., Gündüzalp A. B., Hasdemir E., Selective determination of dopamine in the presence of uric acid and ascorbic acid by N, N′-bis (indole-3-carboxaldimine)-1, 2-diaminocyclohexane thin film modified glassy carbon electrode by differential pulse voltammetry, Journal of Electroanalytical Chemistry, 747, 68-76, 2015.
  • [17] Danyıldız Z., Uzun D., Calam T. T., Hasdemir E., A voltammetric sensor based on glassy carbon electrode modified with 1H-1, 2, 4-triazole-3-thiol coating for rapid determination of trace lead ions in acetate buffer solution, Journal of Electroanalytical Chemistry, 805, 177-183, 2017.
  • [18] Karabiberoğlu Ş. U., Koçak Ç. C., Voltammetric determination of vanillin in commercial food products using overoxidized poly (pyrrole) film-modified glassy carbon electrodes, Turkish Journal of Chemistry 42 (2), 291-305, 2018.
  • [19] Wu W., Yang L., Zhao F., Zeng B., A vanillin electrochemical sensor based on molecularly imprinted poly (1-vinyl-3-octylimidazole hexafluoride phosphorus)− multi-walled carbon nanotubes@ polydopamine–carboxyl single-walled carbon nanotubes composite, Sensors and Actuators B: Chemical, 239, 481-487, 2017.
  • [20] Barsan M. M., Pinto E. M., Brett C. M., Electrosynthesis and electrochemical characterisation of phenazine polymers for application in biosensors, Electrochimica Acta, 53(11), 3973-3982, 2008.
  • [21] Nazari M., Kashanian S., Moradipour P., Maleki N., A novel fabrication of sensor using ZnO-Al2O3 ceramic nanofibers to simultaneously detect catechol and hydroquinone, Journal of Electroanalytical Chemistry, 812, 122-131, 2018.
  • [22] Laviron E., The use of linear potential sweep voltammetry and of ac voltammetry for the study of the surface electrochemical reaction of strongly adsorbed systems and of redox modified electrodes, J. Electroanal. Chem. 100, 263-270, 1979.
  • [23] Chen C., Chen W., Qian L., Gao Z., Determination of catechol by cetyltrimethylammonium bromide functionalized graphene modified electrode, Advances in Sciences and Engineering, 10 (1), 1-1, 2018.
  • [24] Nady H., El-Rabiei M. M., El-Hafez G. A., Electrochemical oxidation behavior of some hazardous phenolic compounds in acidic solution, Egyptian Journal of Petroleum, 26 (3), 669-678, 2017.
  • [25] Goulart L. A., Gonçalves R., Correa A. A., Pereira E. C., Mascaro L. H. Synergic effect of silver nanoparticles and carbon nanotubes on the simultaneous voltammetric determination of hydroquinone, catechol, bisphenol A and phenol, Microchimica Acta, 185 (1), 12, 2018.
  • [26] Zhao G. H, Tang Y. T, Liu M. C., Lei Y. Z.,Xiao X. E., Direct and simultaneous determination of phenol, hydroquinone and nitrophenol at borondoped diamond film electrode, Chinese Journal of Chemistry, 25, 1445–1450, 2007. https:// doi.org/10.1002/cjoc.200790267
  • [27] Hashemnia S., Khayatzadeh S., Hashemnia M., Electrochemical detection of phenolic compounds using composite film of multiwall carbon nanotube/surfactant/tyrosinase on a carbon paste electrode, J. Solid State Electrochem., 16:473–479, 2012. https://doi.org/10.1007/s10008-011-1355-2
  • [28] Shahbakhsh M., Noroozifar M., Poly (dopamine quinone-chromium (III) complex) microspheres as new modifier for simultaneous determination of phenolic compounds, Biosensors and Bioelectronics, 102, 439-448, 2018.
  • [29] Campuzano S., Serra B., Pedrero M., Villena F. J. M., Pingarrón J. M., Amperometric flow-injection determination of phenolic compounds at self-assembled monolayer-based tyrosinase biosensors, Analytica Chimica Acta, 494, 187–197, 2003.
  • [30] Tatli F., Uzun D., Calam T. T., Gündüzalp A. B., Hasdemir E., Preparation and characterization of 3‐[(1H‐1, 2, 4‐triazole‐3‐ylimino) methyl] naphtalene‐2‐ol film at the platinum surface for selective voltammetric determination of dopamine in the presence of uric acid and ascorbic acid, Surface and Interface Analysis, 51 (4), 475-483, 2019.
Toplam 31 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Tuğba Tabanlıgil Calam 0000-0002-3712-7713

Yayımlanma Tarihi 25 Aralık 2019
Gönderilme Tarihi 23 Mart 2019
Kabul Tarihi 19 Ağustos 2019
Yayımlandığı Sayı Yıl 2020

Kaynak Göster

APA Tabanlıgil Calam, T. (2019). 1H-1, 2, 4-triazole-3-thiol modifiye altın elektrot kullanılarak fenolün elektrokimyasal davranışının incelenmesi ve voltametrik tayini. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 35(2), 835-844. https://doi.org/10.17341/gazimmfd.543608
AMA Tabanlıgil Calam T. 1H-1, 2, 4-triazole-3-thiol modifiye altın elektrot kullanılarak fenolün elektrokimyasal davranışının incelenmesi ve voltametrik tayini. GUMMFD. Aralık 2019;35(2):835-844. doi:10.17341/gazimmfd.543608
Chicago Tabanlıgil Calam, Tuğba. “1H-1, 2, 4-Triazole-3-Thiol Modifiye altın Elektrot kullanılarak fenolün Elektrokimyasal davranışının Incelenmesi Ve Voltametrik Tayini”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 35, sy. 2 (Aralık 2019): 835-44. https://doi.org/10.17341/gazimmfd.543608.
EndNote Tabanlıgil Calam T (01 Aralık 2019) 1H-1, 2, 4-triazole-3-thiol modifiye altın elektrot kullanılarak fenolün elektrokimyasal davranışının incelenmesi ve voltametrik tayini. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 35 2 835–844.
IEEE T. Tabanlıgil Calam, “1H-1, 2, 4-triazole-3-thiol modifiye altın elektrot kullanılarak fenolün elektrokimyasal davranışının incelenmesi ve voltametrik tayini”, GUMMFD, c. 35, sy. 2, ss. 835–844, 2019, doi: 10.17341/gazimmfd.543608.
ISNAD Tabanlıgil Calam, Tuğba. “1H-1, 2, 4-Triazole-3-Thiol Modifiye altın Elektrot kullanılarak fenolün Elektrokimyasal davranışının Incelenmesi Ve Voltametrik Tayini”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 35/2 (Aralık 2019), 835-844. https://doi.org/10.17341/gazimmfd.543608.
JAMA Tabanlıgil Calam T. 1H-1, 2, 4-triazole-3-thiol modifiye altın elektrot kullanılarak fenolün elektrokimyasal davranışının incelenmesi ve voltametrik tayini. GUMMFD. 2019;35:835–844.
MLA Tabanlıgil Calam, Tuğba. “1H-1, 2, 4-Triazole-3-Thiol Modifiye altın Elektrot kullanılarak fenolün Elektrokimyasal davranışının Incelenmesi Ve Voltametrik Tayini”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, c. 35, sy. 2, 2019, ss. 835-44, doi:10.17341/gazimmfd.543608.
Vancouver Tabanlıgil Calam T. 1H-1, 2, 4-triazole-3-thiol modifiye altın elektrot kullanılarak fenolün elektrokimyasal davranışının incelenmesi ve voltametrik tayini. GUMMFD. 2019;35(2):835-44.