Çapraz akışlı fan gömülü bir kanat konfigürasyonu aerodinamiğinin deneysel ve sayısal incelenmesi
Yıl 2023,
, 1 - 14, 21.06.2022
Ekmel Coşkunses
,
Onur Tunçer
Öz
Bu çalışmada incelenen fan-kanat, kısmen
gömülü çapraz akışlı fana (CFF) sahip olup, düşük uçuş hızları ve yüksek
manevra kabiliyeti gerektiren hava araçları için uygundur. Bu çalışmanın amacı fan-kanat
modeli çevresindeki akışın ve modele etkiyen aerodinamik kuvvetlerin TSR, Reynolds
sayısı ve AoA parametreleri ile değişiminin deneysel ve sayısal yöntemlerle
incelenmesidir. Bu amaçla BDT yazılımıyla tasarlanan deney modeli HAD
yazılımına aktarılarak akış analizinde de kullanılmıştır. HAD analizinde daimi akış kabulüyle RANS modeli MRF yöntemi kullanılarak
çözülmüştür. Hava tünelinde modelin iz bölgesinde basınç ölçümleri yapılarak
Jones yöntemi ile sürükleme/itki katsayıları elde edilmiştir. Aerodinamik kuvvetlerin direkt ölçümü
kuvvet-denge mekanizmasında gerçekleştirilmiştir. Model yüzeyindeki
akış ayrılması iplik yöntemi kullanılarak incelenmiştir. Deney sonuçlarına göre
aerodinamik kuvvet katsayıları üzerindeki TSR etkisi Reynolds sayısı etkisine
göre daha fazladır ve yüksek TSR değerleri itki ve taşıma katsayılarını arttırmaktadır.
Artan Reynolds sayısı ile taşıma katsayısı azalırken, itki katsayısı
artmaktadır. En büyük itki katsayısı sıfır derece hücum açısında elde
edilmiştir. Fan çalışmıyor iken, model üst
yüzeyinin firar kenarına yakın bölgesinde yüksek AoA ve Re değerlerinde akış
ayrılması görülmüş, fan çalışıp TSR değeri 1’in
üstüne çıktığında ortadan kalkmıştır. HAD analizinde sıfır derece hücum açısı
ve TSR = 1,4 için farklı Reynolds sayılarında deney sonuçlarından en fazla % 4 farklı itki katsayıları elde edilmiştir.
Destekleyen Kurum
İTÜ Bilimsel Araştırma Projeleri ( BAP ) birimi
Teşekkür
Makale kapsamındaki konular ile ilgili değerli katkılarından dolayı İTÜ öğretim üyesi sayın Doç. Dr. Bayram Çelik ve Koç Üniversitesi öğretim üyesi sayın Prof. Dr. Metin Muradoğlu’na teşekkür ederiz.
Kaynakça
- Kim H.D., Saunders J.D., Embedded wing propulsion conceptual study, NASA/TM-2003-212696, 1-12, 2003.
- Dang T.Q., Bushnell P.R., Aerodynamics of cross flow fans and their application to aircraft propulsion and flow control, Prog. Aerosp. Sci., 45, 1-29, 2009.
- Eck B., FANS, Pergamon Press, First English Edition, New York, A.B.D., 1973.
- Ackeret, J., Present and future problems of airplane propulsion, NACA TM No. 976, 1941.
- Dornier, P., Multiple drive for aircraft having wings provided with transverse flow blowers, US Patent No. 3,065,928, 1962.
- Nieh T.W., The propulsive characteristics of a cross flow fan installed in an airfoil, MSc. Thesis, University of Texas at Arlington, Texas, 1988.
- Hobson G.V., Cheng W.T., Seaton M.S., Gannon A., Platzer M.F., Experimental and computational investigation of cross flow fan propulsion for lightweight VTOL aircraft, Proceedings of ASME Turbo Expo 2004, Vienna, Austria, 781-791, June 14-17, 2004.
- Kummer J.D., Dang T.Q. , Cross flow fan propulsion system, US Patent No. 7,641,144 B2, 2010.
- Kummer J.D., Dang T.Q., High-lift propulsive airfoil with integrated cross flow fan, Journal of Aircraft, Vol.43, No.4, 1059-1068, 2006.
- Dygert R.K., Dang T.Q., Experimental investigation of an embedded crossflow fan for airfoil propulsion/circulation control, J. Propul. Power, Vol.25, No.1, 196-203, 2009.
- Golagan C., Mores S., Steiner H.S., Sietz A., Potential of the cross flow fan for powered-lift regional aircraft applications, 9th AIAA Aviation Technology, Integration, and Operations Conference (ATIO), Hilton Head, South Carolina, 1-10, 21-23 September, 2009.
- Phan N.H., Leading edge embedded fan airfoil concept – a new powered high lift technology, Ph.D. Thesis, Syracuse University, New York, 2015.
- Peebles P., Fluid dynamic lift generation device, US Patent No. 6,231,004, 2001.
- Seyfang G.R., FanWing – developments and applications, Proceedings of ICAS 2012, 1-9, 2012.
- Ahad O., Graham J.M.R., Flight simulation and testing of the FanWing experimental aircraft, Aircraft Engineering and Aerospace Technology, 79/2 (2007), 131-136, 2007
- Duddempudi D., Yao Y., Edmondson D., Yao F., Curley A., Computational study of flow over generic FanWing airfoil, Aircraft Engineering and Aerospace Technology, 79/3 (2007), 238-244, 2007.
- Askari S., Shojaeefard M.H., Numerical simulation of flow over an airfoil with a cross flow fan as a lift generating member in a new aircraft model, Aircraft Engineering and Aerospace Technology, 81/1, 59-64, 2009.
- Askari S., Shojaeefard M.H., Shape optimization of the airfoil comprising a cross flow fan, Aircraft Engineering and Aerospace Technology, 81/5, 407-415, 2009.
- Askari S., Shojaeefard M.H., and Goudarzi K., Experimental study of stall in an airfoil with forced airflow provided by an integrated cross flow fan, Proc. IMechE., Vol.225, Part G: J. Aerosp. Eng., 97-104, 2011.
- Askari S., Shojaeefard M.H., Experimental and numerical study of an airfoil in combination with a cross flow fan, J. Aerosp. Eng., 227(7), 1173-1187, 2012.
- Askari S., Shojaeefard M.H., Experimental and numerical investigation of the flap application in an airfoil in combination with a cross flow fan, Int. J. Numer. Methods Heat Fluid Flow, Vol.22, No.6, 742-763, 2012.
- Saracoglu B.H., Paniagua G., Analysis of the flow field around the wing section of a FanWing aircraft under various flow conditions, 53rd AIAA Aerospace Sciences Meeting, Kissimmee, Florida, 1-8, January 5-9, 2015.
- Alviach G.R., Villafane L., Paniagua G., Optical characterization of a cross flow fan for distributed propulsion, 52nd AIAA/SAE/ASEE Joint Propulsion Conference, Salt Lake City, UT, 1-5, July 25-27, 2016.
- Durmaz S., Alahmad O., and Saracoglu B.H., Performance optimization of a novel wing integrated distributed propulsion system, 2018 AIAA Aerospace Sciences Meeting, 1-12, January 2018.
- Siliang D., Zhengfei T., The aerodynamic behavioral study of tandem fan wing configuration, Int. J. of Aerosp. Eng., Article ID 1594570, 1-14, 2018.
- Russo G.P., Aerodynamic Measurements, Woodhead Publishing, First Edition, Cambridge, İngiltere, 2011.
- McMahon H., Jagoda J., Komerath N., Seitzman J., Force measurement in a subsonic wind tunnel, Lesson Plan for AE3051 Experimental Fluid Dynamics, Georgia Institute of Technology, Georgia, 1-8, 2009.
- Morris M., Post S., Force balance design for educational wind tunnels, AC 2010-393, 1-10, 2010.
- Barlow J.B., Rae W.H., Pope A., Low Speed Wind Tunnel Testing, John Wiley & Sons Ltd., Third Edition, New York, A.B.D., 1999.
- Anderson J.D., Fundamentals of Aerodynamics, McGraw-Hill, Fifth Edition, Singapur, 2011.