Araştırma Makalesi
BibTex RIS Kaynak Göster

Electrochemical determination of ascorbic acid with thermally reduced graphene oxide

Yıl 2020, , 1589 - 1602, 07.04.2020
https://doi.org/10.17341/gazimmfd.645284

Öz

In this study, electrochemical behavior of a glassy
carbon electrode (GCE), which is covered with thermally reduced graphene oxide
(T-rGO) and Nafion solution (N117), is investigated using the cyclic
voltammetry (CV), differential pulse voltammetry (DPV) and amperometric
techniques in phosphate buffer solution (PBS) contains ascorbic acid (AA). For
this purpose, T-rGO is synthesized from synthetic graphite as the starting
material to graphene oxide by modified Hummers method, followed by reduction of
graphene oxide with flash heat treatment in inert gas environment. In order to
characterize the structure, several techniques such as SEM, XRD, Raman, FTIR and
elemental analysis are used. Number of layer of T-rGO is determined as about
3.32 with using XRD analysis data. In the PBS with different pH values (6, 7
and 8) containing 5.0 mM AA, the highest current value with a clearly anodic
oxidation peak is obtained for the GCE/T-rGO electrode in the pH 8 PBS.
According to the results obtained with GCE/T-rGO electrode, AA can be detected
over a wide linear detection range between the AA concentration and anodic peak
current (4.0-100.0 mM, R2=0.9978) with good sensitivity (0.3 μA mM-1),
high detection limit (0.61 μM), good reproducibility (RSD=6.25%, n=3) and
repeatability (RSD=2.14%, n=3). In addition, the GCE/T-rGO electrode showed
good selectivity against the uric acid, NaCl and CaCl2. For these
reasons, it is thought that the GCE/T-rGO electrodes can be used for
electrochemical determination of AA molecule.

Kaynakça

  • 1. Novoselov K.S., Geim A.K., Morozov S. V., Jiang D., Zhang Y., Dubonos S. V., Grigorieva I. V., Firsov A.A., Electric field effect in atomically thin carbon films, Science, 306, 666-669, 2004.
  • 2. Chee W.K., Lim H.N., Huang N.M., Harrison I., Nanocomposites of graphene/polymers: a review, RSC Adv., 5, 68014-68051, 2015.
  • 3. Shams S.S., Zhang R., Zhu J., Graphene synthesis: a review, Mater. Sci. Pol., 33 (3), 566-578, 2015.
  • 4. Zhu Y., Murali S., Cai W., Li X., Suk J.W., Potts J.R., Ruoff R.S., Graphene and graphene oxide: synthesis, properties, and applications, Adv. Mater., 22 (35), 3906-3924, 2010.
  • 5. Johra F.T., Lee J.W., Jung W.G., Facile and safe graphene preparation on solution based platform, J. Ind. Eng. Chem. 20, 2883-2887, 2014.
  • 6. Singh R.K., Kumar R., Singh D.P., Graphene oxide: strategies for synthesis, reduction and frontier applications, RSC Adv., 6, 64993-65011, 2016.
  • 7. Brodie B.C., Sur le poids atomique du graphite, Ann. Chim. Phys., 59, 466-472, 1860.
  • 8. Staudenmaier L., Verfahren zur darstellung der graphitsäure, Ber. Dtsch. Chem. Ges., 31 (2), 1481-1487, 1898.
  • 9. Hofmann U., König E., Untersuchungen über graphitoxyd, Z. Anorg. Allg. Chem., 234, 311-336, 1937.
  • 10. Hummers W.S., Offeman R.E., Preparation of graphitic oxide, J. Am. Chem. Soc., 80, 1339-1339, 1958.
  • 11. Ha H.W., Choudhury A., Kamal T., Kim D.H., Park S.Y., Effect of chemical modification of graphene on mechanical, electrical, and thermal properties of polyimide/graphene nanocomposites, ACS Appl. Mater. Interfaces, 4 (9), 4623-4630, 2012.
  • 12. Chang K.C., Lu H.I., Lai M.C., Hsu C.H., Hsiao Y.R., Huang K.Y., Chuang T.L., Yeh J.M., Liu W.R., Enhancement of physical properties of electroactive polyimide nanocomposites by addition of graphene nanosheets, Polym. Int., 63, 1011-1017, 2014.
  • 13. Voiry D., Yang J., Kupferberg J., Fullon R., Lee C., Jeong H.Y., Shin H.S., Chhowalla M., High-quality graphene via microwave reduction of solution-exfoliated graphene oxide, Science, 353 (6306), 1413-1416, 2016.
  • 14. Duy L.T., Kalanur S.S., Cho I.S., Seo H., Rapid photocatalytic reduction of graphene oxide indirectly activated by the domino effect of ethanol oxidation on a titanium dioxide film, Mater. Chem. Phys., 218, 289-295, 2018.
  • 15. Kim S., Choi K., Park S., Solvothermal reduction of graphene oxide in dimethylformamide, Solid State Sci., 61, 40-43, 2016.
  • 16. Zhu C., Zhai J., Wen D., Dong S., Graphene oxide/polypyrrole nanocomposites: one-step electrochemical doping, coating and synergistic effect for energy storage, J. Mater. Chem., 22, 6300-6306, 2012.
  • 17. Phong N.H., Toan T.T.T., Tinh M.X., Tuyen T.N., Mau T.X., Khieu D.Q., Simultaneous voltammetric determination of ascorbic acid, paracetamol, and caffeine using electrochemically reduced graphene oxide modified electrode, J. Nanomater., 5348016, 1-15, 2018.
  • 18. Liao W., Guo C., Sun L., Li Z., Tian L., He J., Li J., Zheng J., Ma Z., Luo Z., Chen C., The electrochemical behavior of nafion/reduced graphene oxide modified carbon electrode surface and its application to ascorbic acid determination, Int. J. Electrochem. Sci., 10, 5747-5755, 2015.
  • 19. Malathi M., Violet Dhayabaran V., Highly sensitive determination of chromium (VI) based on reduced graphene oxide / polyaniline - nafion composite modified electrode, Der Pharma Chem., 8 (19), 49-56, 2016.
  • 20. Yang L., Liu D., Huang J., You T., Simultaneous determination of dopamine, ascorbic acid and uric acid at electrochemically reduced graphene oxide modified electrode, Sensors Actuators, B Chem., 193, 166-172, 2014.
  • 21. Sun C.L., Lee H.H., Yang J.M., Wu C.C., The simultaneous electrochemical detection of ascorbic acid, dopamine, and uric acid using graphene/size-selected Pt nanocomposites, Biosens. Bioelectron., 26, 3450-3455, 2011.
  • 22. Das G., Yoon H.H., Amperometric urea biosensors based on sulfonated graphene/polyaniline nanocomposite, Int. J. Nanomedicine., 10, 55-66, 2015.
  • 23. Lv Y., Wang F., Zhu H., Zou X., Tao C.A., Wang J., Electrochemically reduced graphene oxide-nafion/Au nanoparticle modified electrode for hydrogen peroxide sensing, Nanomater. Nanotechnol., 6 (30), 1-7, 2016.
  • 24. Heli H., Sattarahmady N., Amperometric determination of ascorbic acid in pharmaceutical formulations by a reduced graphene oxide-cobalt hexacyanoferrate nanocomposite, Iran. J. Pharm. Res., 14 (2), 453-463, 2015.
  • 25. Zhu Q., Bao J., Huo D., Yang M., Hou C., Guo J., Chen M., Fa H., Luo X., Ma Y., 3D Graphene hydrogel - gold nanoparticles nanocomposite modified glassy carbon electrode for the simultaneous determination of ascorbic acid, dopamine and uric acid, Sensors Actuators, B Chem., 238, 1316-1323, 2017.
  • 26. Chen K., Zhang Z.L., Liang Y.M., Liu W., A graphene-based electrochemical sensor for rapid determination of phenols in water, Sensors, 13, 6204-6216, 2013.
  • 27. Xue R., Kang T.F., Lu L.P., Cheng S.Y., Electrochemical sensor based on the graphene-nafion matrix for sensitive determination of organophosphorus pesticides, Anal. Lett., 46, 131-141, 2013.
  • 28. Sun F., Fan G., Development of a nafion-graphene nanocomposite for sensitive electrochemical determination of cadmium(II) ions, Int. J. Electrochem. Sci., 12, 8167-8176, 2017.
  • 29. Pakrieva E., Oskina Y., Ustinova E., Determination of platinum in mineral raw materials by switching chronoamperometry, IOP Conf. Ser. Earth Environ. Sci., 21, 1-5, 2014.
  • 30. Han D., Han T., Shan C., Ivaska A., Niu L., Simultaneous determination of ascorbic acid, dopamine and uric acid with chitosan-graphene modified electrode, Electroanalysis., 22 (17-18), 2001-2008, 2010.
  • 31. Lee C.S., Yu S., Kim T., One-step electrochemical fabrication of reduced graphene oxide/gold nanoparticles nanocomposite-modified electrode for simultaneous detection of dopamine, ascorbic acid, and uric acid, Nanomaterials., 8 (17), 1-13, 2018.
  • 32. Çiftçi H., Alver E., Çelik F., Metin A.Ü., Tamer U., Non-enzymatic sensing of glucose using a glassy carbon electrode modified with gold nanoparticles coated with polyethyleneimine and 3-aminophenylboronic acid, Microchim. Acta., 183, 1479-1486, 2016.
  • 33. Asan G., Çelikkan H., Electrochemical analysis of ascorbic acid with MoS2 based electrode, J. Fac. Eng. Archit. Gazi Univ., 32, 617-625, 2017.
  • 34. Marcano D.C., Kosynkin D. V, Berlin J.M., Sinitskii A., Sun Z., Slesarev A., Alemany L.B., Lu W., Tour J.M., Improved synthesis of graphene oxide, ACS Nano., 4 (8), 4806-4814, 2010.
  • 35. Hassan F.M., Batmaz R., Li J., Wang X., Xiao X., Yu A., Chen Z., Evidence of covalent synergy in silicon-sulfur-graphene yielding highly efficient and long-life lithium-ion batteries, Nat. Commun., 6 (8597), 1-11, 2015.
  • 36. Dimiev A.M., Tour J.M., Mechanism of graphene oxide formation, ACS Nano., 8 (3), 3060-3068, 2014.
  • 37. Pei S., Cheng H.M., The reduction of graphene oxide, Carbon, 50, 3210-3228, 2012.
  • 38. Mokhtar M., Enein SA.A.E., Hassaan MY., Morsy MS., Khalil MH., Thermally reduced graphene oxide : synthesis, structural and electrical properties, Int J Nanoparticles Nanotech., 3 (8), 1-9, 2017.
  • 39. Yazıcı M., Tiyek İ., Ersoy M.S., Alma M.H., Dönmez U., Yıldırım B., Salan T., Karataş Ş., Uruş S., Karteri İ., Yıldız K., Modifiye hummers yöntemiyle grafen oksit (GO) sentezi ve karakterizasyonu, GU J Sci Part C, 4 (2), 41-48, 2016.
  • 40. Chen G., Weng W., Wu D., Wu C., Lu J., Wang P., Chen X., Preparation and characterization of graphite nanosheets from ultrasonic powdering technique, Carbon, 42, 753-759, 2004.
  • 41. Zhao B., Zhang G., Song J., Jiang Y., Zhuang H., Liu P., Fang T., Bivalent tin ion assisted reduction for preparing graphene/SnO2 composite with good cyclic performance and lithium storage capacity, Electrochim. Acta, 56, 7340-7346, 2011.
  • 42. Ferrari A.C., Raman spectroscopy of graphene and graphite: disorder, electron-phonon coupling, doping and nonadiabatic effects, Solid State Commun., 143, 47-57, 2007.
  • 43. Huang S.Y., Zhao B., Zhang K., Yuen M.M.F., Xu J.B., Fu X.Z., Sun R., Wong C.P., Enhanced reduction of graphene oxide on recyclable Cu foils to fabricate graphene films with superior thermal conductivity, Sci. Rep., 5 (14260), 1-11, 2015.
  • 44. Zhao D., Yu G., Tian K., Xu C., A highly sensitive and stable electrochemical sensor for simultaneous detection towards ascorbic acid, dopamine, and uric acid based on the hierarchical nanoporous PtTi alloy, Biosens. Bioelectron., 82, 119-126, 2016.
  • 45. Qi S., Zhao B., Tang H., Jiang X., Determination of ascorbic acid, dopamine, and uric acid by a novel electrochemical sensor based on pristine graphene, Electrochim. Acta, 161, 395-402, 2015.
  • 46. Kim Y.R., Bong S., Kang Y.J., Yang Y., Mahajan R.K., Kim J.S., Kim H., Electrochemical detection of dopamine in the presence of ascorbic acid using graphene modified electrodes, Biosens. Bioelectron., 25, 2366-2369, 2010.
  • 47. Tsierkezos N.G., Othman S.H., Ritter U., Hafermann L., Knauer A., Köhler J.M., Downing C., McCarthy E.K., Electrochemical analysis of ascorbic acid, dopamine, and uric acid on nobel metal modified nitrogen-doped carbon nanotubes, Sensors Actuators, B Chem., 231, 218-229, 2016.
  • 48. Raj M.A., John S.A., Simultaneous determination of uric acid, xanthine, hypoxanthine and caffeine in human blood serum and urine samples using electrochemically reduced graphene oxide modified electrode, Anal. Chim. Acta., 771, 14-20, 2013.
  • 49. Guo H.L., Wang X.F., Qian Q.Y., Wang F.B., Xia X.H., A green approach to the synthesis of graphene nanosheets, ACS Nano, 3 (9), 2653-2659, 2009.
  • 50. Wang Y., Li Y., Tang L., Lu J., Li J., Application of graphene-modified electrode for selective detection of dopamine, Electrochem. Commun., 11, 889-892, 2009.
  • 51. Becerril H.A., Mao J., Liu Z., Stoltenberg R.M., Bao Z., Chen Y., Evaluation of solution-processed reduced graphene oxide films as transparent conductors, ACS Nano, 2 (3), 463-470, 2008.
  • 52. Wang X., Zhi L., Müllen K., Transparent, conductive graphene electrodes for dye-sensitized solar cells, Nano Lett., 8 (1), 323-327, 2008.
  • 53. Sengupta I., Chakraborty S., Talukdar M., Pal S.K., Chakraborty S., Thermal reduction of graphene oxide: how temperature influences purity, J. Mater. Res., 33 (23), 4113-4122, 2018.
  • 54. Taverniers I., De Loose M., Van Bockstaele E., Trends in quality in the analytical laboratory. II. analytical method validation and quality assurance, Trends Anal. Chem., 23 (8), 535-552, 2004.
  • 55. Çoğal S., Grafen oksit-polianilin nanokompozit temelli amperometrik glukoz biyosensörü geliştirilmesi, Akad. Gıda. 15 (2), 124-129, 2017.
  • 56. Wu G.H., Wu Y.F., Liu X.W., Rong M.C., Chen X.M., Chen X., An electrochemical ascorbic acid sensor based on palladium nanoparticles supported on graphene oxide, Anal. Chim. Acta, 745, 33-37, 2012.
  • 57. Du J., Yue R., Ren F., Yao Z., Jiang F., Yang P., Du Y., Novel graphene flowers modified carbon fibers for simultaneous determination of ascorbic acid, dopamine and uric acid, Biosens. Bioelectron., 53, 220-224, 2014.

Termal indirgenmiş grafen oksit ile elektrokimyasal olarak askorbik asit tayini

Yıl 2020, , 1589 - 1602, 07.04.2020
https://doi.org/10.17341/gazimmfd.645284

Öz

Bu çalışmada termal olarak indirgenmiş grafen
oksit (T-rGO) ve Nafion çözeltisi (N117) ile kaplanmış camsı karbon elektrotun
(GCE), fosfat tampon çözeltisindeki (PBS) askorbik asitin (AA) varlığına göre
elektrokimyasal davranışı dönüşümlü voltametri (CV), diferansiyel puls
voltametri (DPV) ve amperometrik tekniklerle incelenmiştir. Bu amaçla T-rGO,
başlangıç malzemesi olan sentetik grafitten modifiye Hummers yöntemi ile grafen
oksite (GO), ardından da GO’nun inert gaz ortamında termal işlem uygulanarak
indirgenmesi ile sentezlenmiştir. Yapının karakterize edilmesi amacıyla SEM,
XRD, Raman, FTIR ve elementel analiz gibi çeşitli teknikler kullanılmıştır. XRD
analiz verileri kullanılarak yaklaşık 3,32 tabaka sayısına sahip T-rGO elde
edildiği tespit edilmiştir. 5,0 mM AA içeren farklı pH değerlerine sahip (6, 7
ve 8) PBS arasından, pH 8 çözeltisindeki GCE/T-rGO elektrotu için en belirgin
anodik yükseltgenme piki elektrot üzerinden geçen en yüksek akım miktarıyla elde
edilmiştir. GCE/T-rGO elektrotu ile elde edilen sonuçlara göre, AA, derişim ve
anodik pik akımı arasındaki geniş doğrusal tayin aralığında (4,0-100,0 mM, R2=0,9978)
yüksek hassasiyet (0,3 μA mM-1), tayin limiti (0,61 μM), yeniden
üretilebilirlik (RSD=%6,25, n=3) ve tekrarlanabilirlikle (RSD=%2,14, n=3)
belirlenebilmektedir. Ayrıca, GCE/T-rGO elektrot ürik asit, NaCl ve CaCl2’e
karşı yüksek seçicilik sergilemiştir. Bu nedenlerle, hazırlanan GCE/T-rGO
elektrotların
AA molekülünün elektrokimyasal tayininde kullanılabileceği düşünülmektedir.

Kaynakça

  • 1. Novoselov K.S., Geim A.K., Morozov S. V., Jiang D., Zhang Y., Dubonos S. V., Grigorieva I. V., Firsov A.A., Electric field effect in atomically thin carbon films, Science, 306, 666-669, 2004.
  • 2. Chee W.K., Lim H.N., Huang N.M., Harrison I., Nanocomposites of graphene/polymers: a review, RSC Adv., 5, 68014-68051, 2015.
  • 3. Shams S.S., Zhang R., Zhu J., Graphene synthesis: a review, Mater. Sci. Pol., 33 (3), 566-578, 2015.
  • 4. Zhu Y., Murali S., Cai W., Li X., Suk J.W., Potts J.R., Ruoff R.S., Graphene and graphene oxide: synthesis, properties, and applications, Adv. Mater., 22 (35), 3906-3924, 2010.
  • 5. Johra F.T., Lee J.W., Jung W.G., Facile and safe graphene preparation on solution based platform, J. Ind. Eng. Chem. 20, 2883-2887, 2014.
  • 6. Singh R.K., Kumar R., Singh D.P., Graphene oxide: strategies for synthesis, reduction and frontier applications, RSC Adv., 6, 64993-65011, 2016.
  • 7. Brodie B.C., Sur le poids atomique du graphite, Ann. Chim. Phys., 59, 466-472, 1860.
  • 8. Staudenmaier L., Verfahren zur darstellung der graphitsäure, Ber. Dtsch. Chem. Ges., 31 (2), 1481-1487, 1898.
  • 9. Hofmann U., König E., Untersuchungen über graphitoxyd, Z. Anorg. Allg. Chem., 234, 311-336, 1937.
  • 10. Hummers W.S., Offeman R.E., Preparation of graphitic oxide, J. Am. Chem. Soc., 80, 1339-1339, 1958.
  • 11. Ha H.W., Choudhury A., Kamal T., Kim D.H., Park S.Y., Effect of chemical modification of graphene on mechanical, electrical, and thermal properties of polyimide/graphene nanocomposites, ACS Appl. Mater. Interfaces, 4 (9), 4623-4630, 2012.
  • 12. Chang K.C., Lu H.I., Lai M.C., Hsu C.H., Hsiao Y.R., Huang K.Y., Chuang T.L., Yeh J.M., Liu W.R., Enhancement of physical properties of electroactive polyimide nanocomposites by addition of graphene nanosheets, Polym. Int., 63, 1011-1017, 2014.
  • 13. Voiry D., Yang J., Kupferberg J., Fullon R., Lee C., Jeong H.Y., Shin H.S., Chhowalla M., High-quality graphene via microwave reduction of solution-exfoliated graphene oxide, Science, 353 (6306), 1413-1416, 2016.
  • 14. Duy L.T., Kalanur S.S., Cho I.S., Seo H., Rapid photocatalytic reduction of graphene oxide indirectly activated by the domino effect of ethanol oxidation on a titanium dioxide film, Mater. Chem. Phys., 218, 289-295, 2018.
  • 15. Kim S., Choi K., Park S., Solvothermal reduction of graphene oxide in dimethylformamide, Solid State Sci., 61, 40-43, 2016.
  • 16. Zhu C., Zhai J., Wen D., Dong S., Graphene oxide/polypyrrole nanocomposites: one-step electrochemical doping, coating and synergistic effect for energy storage, J. Mater. Chem., 22, 6300-6306, 2012.
  • 17. Phong N.H., Toan T.T.T., Tinh M.X., Tuyen T.N., Mau T.X., Khieu D.Q., Simultaneous voltammetric determination of ascorbic acid, paracetamol, and caffeine using electrochemically reduced graphene oxide modified electrode, J. Nanomater., 5348016, 1-15, 2018.
  • 18. Liao W., Guo C., Sun L., Li Z., Tian L., He J., Li J., Zheng J., Ma Z., Luo Z., Chen C., The electrochemical behavior of nafion/reduced graphene oxide modified carbon electrode surface and its application to ascorbic acid determination, Int. J. Electrochem. Sci., 10, 5747-5755, 2015.
  • 19. Malathi M., Violet Dhayabaran V., Highly sensitive determination of chromium (VI) based on reduced graphene oxide / polyaniline - nafion composite modified electrode, Der Pharma Chem., 8 (19), 49-56, 2016.
  • 20. Yang L., Liu D., Huang J., You T., Simultaneous determination of dopamine, ascorbic acid and uric acid at electrochemically reduced graphene oxide modified electrode, Sensors Actuators, B Chem., 193, 166-172, 2014.
  • 21. Sun C.L., Lee H.H., Yang J.M., Wu C.C., The simultaneous electrochemical detection of ascorbic acid, dopamine, and uric acid using graphene/size-selected Pt nanocomposites, Biosens. Bioelectron., 26, 3450-3455, 2011.
  • 22. Das G., Yoon H.H., Amperometric urea biosensors based on sulfonated graphene/polyaniline nanocomposite, Int. J. Nanomedicine., 10, 55-66, 2015.
  • 23. Lv Y., Wang F., Zhu H., Zou X., Tao C.A., Wang J., Electrochemically reduced graphene oxide-nafion/Au nanoparticle modified electrode for hydrogen peroxide sensing, Nanomater. Nanotechnol., 6 (30), 1-7, 2016.
  • 24. Heli H., Sattarahmady N., Amperometric determination of ascorbic acid in pharmaceutical formulations by a reduced graphene oxide-cobalt hexacyanoferrate nanocomposite, Iran. J. Pharm. Res., 14 (2), 453-463, 2015.
  • 25. Zhu Q., Bao J., Huo D., Yang M., Hou C., Guo J., Chen M., Fa H., Luo X., Ma Y., 3D Graphene hydrogel - gold nanoparticles nanocomposite modified glassy carbon electrode for the simultaneous determination of ascorbic acid, dopamine and uric acid, Sensors Actuators, B Chem., 238, 1316-1323, 2017.
  • 26. Chen K., Zhang Z.L., Liang Y.M., Liu W., A graphene-based electrochemical sensor for rapid determination of phenols in water, Sensors, 13, 6204-6216, 2013.
  • 27. Xue R., Kang T.F., Lu L.P., Cheng S.Y., Electrochemical sensor based on the graphene-nafion matrix for sensitive determination of organophosphorus pesticides, Anal. Lett., 46, 131-141, 2013.
  • 28. Sun F., Fan G., Development of a nafion-graphene nanocomposite for sensitive electrochemical determination of cadmium(II) ions, Int. J. Electrochem. Sci., 12, 8167-8176, 2017.
  • 29. Pakrieva E., Oskina Y., Ustinova E., Determination of platinum in mineral raw materials by switching chronoamperometry, IOP Conf. Ser. Earth Environ. Sci., 21, 1-5, 2014.
  • 30. Han D., Han T., Shan C., Ivaska A., Niu L., Simultaneous determination of ascorbic acid, dopamine and uric acid with chitosan-graphene modified electrode, Electroanalysis., 22 (17-18), 2001-2008, 2010.
  • 31. Lee C.S., Yu S., Kim T., One-step electrochemical fabrication of reduced graphene oxide/gold nanoparticles nanocomposite-modified electrode for simultaneous detection of dopamine, ascorbic acid, and uric acid, Nanomaterials., 8 (17), 1-13, 2018.
  • 32. Çiftçi H., Alver E., Çelik F., Metin A.Ü., Tamer U., Non-enzymatic sensing of glucose using a glassy carbon electrode modified with gold nanoparticles coated with polyethyleneimine and 3-aminophenylboronic acid, Microchim. Acta., 183, 1479-1486, 2016.
  • 33. Asan G., Çelikkan H., Electrochemical analysis of ascorbic acid with MoS2 based electrode, J. Fac. Eng. Archit. Gazi Univ., 32, 617-625, 2017.
  • 34. Marcano D.C., Kosynkin D. V, Berlin J.M., Sinitskii A., Sun Z., Slesarev A., Alemany L.B., Lu W., Tour J.M., Improved synthesis of graphene oxide, ACS Nano., 4 (8), 4806-4814, 2010.
  • 35. Hassan F.M., Batmaz R., Li J., Wang X., Xiao X., Yu A., Chen Z., Evidence of covalent synergy in silicon-sulfur-graphene yielding highly efficient and long-life lithium-ion batteries, Nat. Commun., 6 (8597), 1-11, 2015.
  • 36. Dimiev A.M., Tour J.M., Mechanism of graphene oxide formation, ACS Nano., 8 (3), 3060-3068, 2014.
  • 37. Pei S., Cheng H.M., The reduction of graphene oxide, Carbon, 50, 3210-3228, 2012.
  • 38. Mokhtar M., Enein SA.A.E., Hassaan MY., Morsy MS., Khalil MH., Thermally reduced graphene oxide : synthesis, structural and electrical properties, Int J Nanoparticles Nanotech., 3 (8), 1-9, 2017.
  • 39. Yazıcı M., Tiyek İ., Ersoy M.S., Alma M.H., Dönmez U., Yıldırım B., Salan T., Karataş Ş., Uruş S., Karteri İ., Yıldız K., Modifiye hummers yöntemiyle grafen oksit (GO) sentezi ve karakterizasyonu, GU J Sci Part C, 4 (2), 41-48, 2016.
  • 40. Chen G., Weng W., Wu D., Wu C., Lu J., Wang P., Chen X., Preparation and characterization of graphite nanosheets from ultrasonic powdering technique, Carbon, 42, 753-759, 2004.
  • 41. Zhao B., Zhang G., Song J., Jiang Y., Zhuang H., Liu P., Fang T., Bivalent tin ion assisted reduction for preparing graphene/SnO2 composite with good cyclic performance and lithium storage capacity, Electrochim. Acta, 56, 7340-7346, 2011.
  • 42. Ferrari A.C., Raman spectroscopy of graphene and graphite: disorder, electron-phonon coupling, doping and nonadiabatic effects, Solid State Commun., 143, 47-57, 2007.
  • 43. Huang S.Y., Zhao B., Zhang K., Yuen M.M.F., Xu J.B., Fu X.Z., Sun R., Wong C.P., Enhanced reduction of graphene oxide on recyclable Cu foils to fabricate graphene films with superior thermal conductivity, Sci. Rep., 5 (14260), 1-11, 2015.
  • 44. Zhao D., Yu G., Tian K., Xu C., A highly sensitive and stable electrochemical sensor for simultaneous detection towards ascorbic acid, dopamine, and uric acid based on the hierarchical nanoporous PtTi alloy, Biosens. Bioelectron., 82, 119-126, 2016.
  • 45. Qi S., Zhao B., Tang H., Jiang X., Determination of ascorbic acid, dopamine, and uric acid by a novel electrochemical sensor based on pristine graphene, Electrochim. Acta, 161, 395-402, 2015.
  • 46. Kim Y.R., Bong S., Kang Y.J., Yang Y., Mahajan R.K., Kim J.S., Kim H., Electrochemical detection of dopamine in the presence of ascorbic acid using graphene modified electrodes, Biosens. Bioelectron., 25, 2366-2369, 2010.
  • 47. Tsierkezos N.G., Othman S.H., Ritter U., Hafermann L., Knauer A., Köhler J.M., Downing C., McCarthy E.K., Electrochemical analysis of ascorbic acid, dopamine, and uric acid on nobel metal modified nitrogen-doped carbon nanotubes, Sensors Actuators, B Chem., 231, 218-229, 2016.
  • 48. Raj M.A., John S.A., Simultaneous determination of uric acid, xanthine, hypoxanthine and caffeine in human blood serum and urine samples using electrochemically reduced graphene oxide modified electrode, Anal. Chim. Acta., 771, 14-20, 2013.
  • 49. Guo H.L., Wang X.F., Qian Q.Y., Wang F.B., Xia X.H., A green approach to the synthesis of graphene nanosheets, ACS Nano, 3 (9), 2653-2659, 2009.
  • 50. Wang Y., Li Y., Tang L., Lu J., Li J., Application of graphene-modified electrode for selective detection of dopamine, Electrochem. Commun., 11, 889-892, 2009.
  • 51. Becerril H.A., Mao J., Liu Z., Stoltenberg R.M., Bao Z., Chen Y., Evaluation of solution-processed reduced graphene oxide films as transparent conductors, ACS Nano, 2 (3), 463-470, 2008.
  • 52. Wang X., Zhi L., Müllen K., Transparent, conductive graphene electrodes for dye-sensitized solar cells, Nano Lett., 8 (1), 323-327, 2008.
  • 53. Sengupta I., Chakraborty S., Talukdar M., Pal S.K., Chakraborty S., Thermal reduction of graphene oxide: how temperature influences purity, J. Mater. Res., 33 (23), 4113-4122, 2018.
  • 54. Taverniers I., De Loose M., Van Bockstaele E., Trends in quality in the analytical laboratory. II. analytical method validation and quality assurance, Trends Anal. Chem., 23 (8), 535-552, 2004.
  • 55. Çoğal S., Grafen oksit-polianilin nanokompozit temelli amperometrik glukoz biyosensörü geliştirilmesi, Akad. Gıda. 15 (2), 124-129, 2017.
  • 56. Wu G.H., Wu Y.F., Liu X.W., Rong M.C., Chen X.M., Chen X., An electrochemical ascorbic acid sensor based on palladium nanoparticles supported on graphene oxide, Anal. Chim. Acta, 745, 33-37, 2012.
  • 57. Du J., Yue R., Ren F., Yao Z., Jiang F., Yang P., Du Y., Novel graphene flowers modified carbon fibers for simultaneous determination of ascorbic acid, dopamine and uric acid, Biosens. Bioelectron., 53, 220-224, 2014.
Toplam 57 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Merve Okutan 0000-0002-3110-0675

Yayımlanma Tarihi 7 Nisan 2020
Gönderilme Tarihi 11 Kasım 2019
Kabul Tarihi 29 Şubat 2020
Yayımlandığı Sayı Yıl 2020

Kaynak Göster

APA Okutan, M. (2020). Termal indirgenmiş grafen oksit ile elektrokimyasal olarak askorbik asit tayini. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 35(3), 1589-1602. https://doi.org/10.17341/gazimmfd.645284
AMA Okutan M. Termal indirgenmiş grafen oksit ile elektrokimyasal olarak askorbik asit tayini. GUMMFD. Nisan 2020;35(3):1589-1602. doi:10.17341/gazimmfd.645284
Chicago Okutan, Merve. “Termal Indirgenmiş Grafen Oksit Ile Elektrokimyasal Olarak Askorbik Asit Tayini”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 35, sy. 3 (Nisan 2020): 1589-1602. https://doi.org/10.17341/gazimmfd.645284.
EndNote Okutan M (01 Nisan 2020) Termal indirgenmiş grafen oksit ile elektrokimyasal olarak askorbik asit tayini. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 35 3 1589–1602.
IEEE M. Okutan, “Termal indirgenmiş grafen oksit ile elektrokimyasal olarak askorbik asit tayini”, GUMMFD, c. 35, sy. 3, ss. 1589–1602, 2020, doi: 10.17341/gazimmfd.645284.
ISNAD Okutan, Merve. “Termal Indirgenmiş Grafen Oksit Ile Elektrokimyasal Olarak Askorbik Asit Tayini”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 35/3 (Nisan 2020), 1589-1602. https://doi.org/10.17341/gazimmfd.645284.
JAMA Okutan M. Termal indirgenmiş grafen oksit ile elektrokimyasal olarak askorbik asit tayini. GUMMFD. 2020;35:1589–1602.
MLA Okutan, Merve. “Termal Indirgenmiş Grafen Oksit Ile Elektrokimyasal Olarak Askorbik Asit Tayini”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, c. 35, sy. 3, 2020, ss. 1589-02, doi:10.17341/gazimmfd.645284.
Vancouver Okutan M. Termal indirgenmiş grafen oksit ile elektrokimyasal olarak askorbik asit tayini. GUMMFD. 2020;35(3):1589-602.