Araştırma Makalesi
BibTex RIS Kaynak Göster

Tek eksenli epoksi-cam kompozit manipülatörün titreşim kontrolünün FFT yöntemi ile analizi

Yıl 2021, , 684 - 700, 05.03.2021
https://doi.org/10.17341/gazimmfd.695323

Öz

Bu çalışmada, girdi şekillendirme yoluyla tek eksenli esnek kompozit manipülatörün titreşim kontrolünü incelemek için Hızlı Fourier Dönüşümü'nü (FFT) kullanan bir yöntem tanıtılmıştır. FFT yöntemi, ANSYS tarafından elde edilebilen sistemin darbe cevabını kullanır. Ardından, çeşitli girdiler için FFT yöntemi ile titreşim cevapları bulunur. Yöntem önce 4 serbestlik dereceli bir sistemde doğrulanmıştır. Analitik olarak Laplace dönüşüm yöntemi ile sayısal olarak Newmark yöntemi ile ve doğrudan ANSYS programında elde edilen cevaplar, FFT yöntemi kullanılarak bulunan cevaplar ile karşılaştırılmıştır. Daha sonra, doğal frekansların ve darbe cevabının bulunduğu ANSYS programında tek eksenli kompozit bir manipülatör modellenmiştir. FFT yöntemi, çeşitli trapez hız profillerine sahip girdiler için titreşim cevaplarını elde etmek için kullanılır. Hareket boyunca hareket sonrası titreşimleri elde eden dinamik analiz için hesaplama süresi ANSYS'de 22 saat ve FFT yöntemi için sadece 1 saniye sürmektedir. ANSYS tarafından bulunan doğal frekanslar ve FFT yönteminin bulduğu titreşim cevapları için benzetim sonuçları deneysel sonuçlarla karşılaştırılmıştır ve sonuçlar uyumlu çıkmıştır. Hız profilinin yavaşlama süresinin titreşimi kontrol etmek için etkili olduğu gözlemlenmektedir. Hesaplama süreleri göz önüne alındığında, FFT yöntemi karmaşık mekanik sistemlerin titreşim kontrolünü incelemek için kullanılabilir.

Kaynakça

  • [1] Benosman M., LeVey G., Control of flexible manipulators: A survey, Robotica, 22, 533-545, 2004.
  • [2] Fung T.C., Unconditionally stable higher-order Newmark methods by sub-stepping procedure, Computer Methods in Applied Mechanics and Engineering, 147, 61-84, 1997.
  • [3] Zhang L., Zhu J.W., Zheng Z., The stochastic Newmark algorithm for random analysis of multi-degree-of-freedom nonlinear systems, Computers and Structures, 70, 557-568, 1999.
  • [4] Kurtaran H., Dynamic analysis of moderately thick composite cylindrical panel subjected to moving load. Journal of the Faculty of Engineering and Architecture of Gazi University, 33:2, 381-392, 2018.
  • [5] Kahya V., Araz O., A simple design method for multiple tuned mass dampers in reduction of excessive vibrations of high-speed railway bridges. Journal of the Faculty of Engineering and Architecture of Gazi University, 35:2,607-618, 2020.
  • [6] Citro V., D’Ambrosio R., Giovacchino S.D., A-stability preserving perturbation of Runge–Kutta methods for stochastic differential equations. Applied Mathematics Letter, 120, 1-6, 2020.
  • [7] Egger H., Schmidt K., Shasklov V., Multistep and Runge–Kutta convolution quadrature methods for coupled dynamical systems. Journal of Computational and Applied Mathematics, https://doi.org/10.1016/j.cam.2019.112618, 2020.
  • [8] Xiaolong M., Bo W., Jiaohua Z., Xi S., A new numerical scheme with Wavelet–Galerkin followed by spectral deferred correction for solving string vibration problems, Mechanism and Machine Theory, 142, 1-14, 2019.
  • [9] Taskiran Z.G.C., Sedef H., Realization of memristor based chaotic rossler circuit, Journal of the Faculty of Engineering and Architecture of Gazi University, 35:2,765-774, 2020.
  • [10] Karagülle H., Malgaca L., Analysis of End Point Vibrations of a Two-Link Manipulator by Integrated CAD/CAE Procedures, Finite Elements in Analysis and Design, 40, 2049-2061, 2004.
  • [11] Kara Y., Akbulut H., Mechanical behavior of helical springs made of carbon nanotube additive epoxy composite reinforced with carbon fiber, Journal of the Faculty of Engineering and Architecture of Gazi University 32:2, 417-427, 2017.
  • [12] Çabuk A.S., Sağlam S., Üstün Ö., Investigation on efficiency of in-wheel BLDC motors for different winding structures, Journal of the Faculty of Engineering and Architecture of Gazi University 34:4, 1975-1985, 2019.
  • [13] Karagülle H., Malgaca L., Öktem H.F., Analysis by active vibration control in smart structures by ANSYS, Smart Mater Struct, 13, 661–667, 2004.
  • [14] Xu S.X., Koko T.S., Finite element analysis and design of actively controlled piezoelectric smart structures. Finite Element Analysis Designs, 40, 241–262, 2004.
  • [15] Khot S.M., Yelve N.P., Modeling and response analysis of dynamic systems by using ANSYS© and MATLAB©. Journal of Vibration and Control, 17(6), 953 – 958, 2011.
  • [16] Ahmad M. A., Nasir A. N. K., Ismail R. R., Ramli M. S., Comparison of hybrid control schemes for vibration suppression of flexible robot manipulator," in Computer Modeling and Simulation, ICCMS'09. International Conference on. IEEE. 356-360, 2009.
  • [17] Li W.P., Luo B., Huang H., Active vibration control of Flexible Joint Manipulator using Input Shaping and Adaptive Parameter Auto Disturbance Rejection Controller. Journal of Sound and Vibration, 363, 97–125, 2016.
  • [18] Gurleyuk S.,Cinal S., Robust three-impulse sequence input shaper design. Journal of Vibration and Control, 13(12), 1807-1818, 2007.
  • [19] Adair D., Jaeger M., Aspects of Input Shaping Control of Flexible Mechanical Systems, The Mathematica Journal, 19, dx.doi.org/doi:10.3888/tmj.19-3, 2017.
  • [20] Banerjee A., Singhose W., Command shaping for nonlinear tracking control of a two-link flexible manipulator, Proceedings of the AAS/AIAA Astrodynamics Specialists Conference, American Astronautical Society, 97–121, 1997.
  • [21] Banerjee A., Singhose W., Command shaping for nonlinear tracking control of a two-link flexible manipulator, Journal of Guidance, Control and Dynamics, 21 (6), 1012–1015, 1998.
  • [22] Nguyen Q.C., Ngo H.Q.T., Input Shaping Control to reduce the residual vibration of a flexible beam. Journal of Computer Science and Cybernetics, 32 (1), 73-88, 2016.
  • [23] Ghorbani H., Alipour K., Tarvirdizadeh B., Hadi A., Comparison of various input shaping methods in rest-to-rest motion of the end-effecter of a rigid-flexible robotic system with large deformations capability, Mechanical Systems and Signal Processing, 118, 584-602, 2019.
  • [24] Mar R., Goyal A., Nguyen V., Yang T., Singhose W., Combined input shaping and feedback control for double-pendulum systems, Mechanical Systems and Signal Processing, 85, 267-277, 2017.
  • [25] Piedrafita R., Comin D., Beltran J.R., Simulink® implementation and industrial test of Input Shaping techniques, Control Engineering Practice, 79, 1-21, 2018.
  • [26] Monciet V., Combining FFT methods and standard variational principles to compute bounds and estimates for the properties of elastic composites. Computer Methods in Applied Mechanics and Engineering, 283, 454-473, 2015.
  • [27] Lu W., Ge F., Wu X., Hong Y., Nonlinear dynamics of a submerged floating moored structure by incremental harmonic balance method with FFT. Marine Structures, 31, 63–81, 2013.
  • [28] Mariot S., Leroy V., Pierre J., Elias F., Bouthemy E., Langevin D., Drenckhan W., An FFT approach to the analysis of dynamic properties of gas/liquid interfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 473, 11-17, 2015.
  • [29] Yan W.,J., Yang L., Yang X., Ren W.X., Statistical modeling for fast Fourier transform coefficients of operational vibration measurements with non-Gaussianity using complex-valued t distribution, Mechanical Systems and Signal Processing, 132, 293-314, 2019.
  • [30] Charlere R., Marano R., Gelebart L., Use of composite voxels in FFT based elastic simulations of hollow glass microspheres/polypropylene composites, International Journal of Solids and Structures, 182–183, 1-14, 2020.
  • [31] Badour F.A., Sunar M., Cheeded L., Vibration analysis of rotating machinery using time-frequency analysis and wavelet techniques. Journal of Mechanical Systems and Signal Processing, 25, 2083-2101, 2011.
  • [32] Sudhakar I., Naranaya S.A., Prakash M.A., Condition Monitoring of a 3-Ø Induction Motor by Vibration Spectrum anaylsis using Fft Analyser- A Case Study, Materialstoday: Proceedings, 4(2), 1099-1105, 2017.
  • [33] Kabel M., Merkert D., Schneider M., Use of composite voxels in FFT-based homogenization. Computer Methods in Applied Mechanics and Engineering, 294, 168–188, 2015.
  • [34] Hanbay K., Talu M.F., Özgüven Ö.F., Real time fabric defect detection by using fourier transform, Journal of the Faculty of Engineering and Architecture of Gazi University, 32:1, 151-158, 2017.
  • [35] Singiresu S. Rao, Mechanical Vibrations. 5th Edition, Prentice Hall, 2011.
  • [36] Brigham E.O., The Fast Fourier Transform and Its Applications 1st Edition, Prentice-Hall, 1988.
  • [37] Newmark N.M., A method of computation for structural dynamics. Journal of Engineering Mechanics, ASCE 85, 67-94, 1959.
  • [38] Chitode J.S., Digital Signal Processing, Technical Publications Pune, 2005.
  • [39] Adlink Technology Inc. http://www.adlinktech.com. Erişim Tarihi Şubat 26, 2020.
  • [40] MicroStrain Inc. http://www.microstrain.com/wireless/sensors. Erişim Tarihi Şubat 26, 2020.
  • [41] Ankarali A, Diken H., Vibration control of an elastic manipulator link. Journal of Sound and Vibration, 204(1), 162–70, 1997.
  • [42] Yavuz Ş., Malgaca L., Karagülle H., Vibration control of a single-link flexible composite manipulator. Journal of Composite Structures. 140, 684-691, 2016.
  • [43] Ankaralı A, Mecitoglu Z, Diken H., Response spectrum of a coupled flexible shaft-flexible beam system for cycloidal input motion. Mechanism and Machine Theory, 47, 89–102, 2012.
Toplam 43 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Şahin Yavuz 0000-0001-9007-772X

Hira Karagülle 0000-0001-5546-7538

Yayımlanma Tarihi 5 Mart 2021
Gönderilme Tarihi 27 Şubat 2020
Kabul Tarihi 8 Ekim 2020
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Yavuz, Ş., & Karagülle, H. (2021). Tek eksenli epoksi-cam kompozit manipülatörün titreşim kontrolünün FFT yöntemi ile analizi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 36(2), 684-700. https://doi.org/10.17341/gazimmfd.695323
AMA Yavuz Ş, Karagülle H. Tek eksenli epoksi-cam kompozit manipülatörün titreşim kontrolünün FFT yöntemi ile analizi. GUMMFD. Mart 2021;36(2):684-700. doi:10.17341/gazimmfd.695323
Chicago Yavuz, Şahin, ve Hira Karagülle. “Tek Eksenli Epoksi-Cam Kompozit manipülatörün titreşim kontrolünün FFT yöntemi Ile Analizi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 36, sy. 2 (Mart 2021): 684-700. https://doi.org/10.17341/gazimmfd.695323.
EndNote Yavuz Ş, Karagülle H (01 Mart 2021) Tek eksenli epoksi-cam kompozit manipülatörün titreşim kontrolünün FFT yöntemi ile analizi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 36 2 684–700.
IEEE Ş. Yavuz ve H. Karagülle, “Tek eksenli epoksi-cam kompozit manipülatörün titreşim kontrolünün FFT yöntemi ile analizi”, GUMMFD, c. 36, sy. 2, ss. 684–700, 2021, doi: 10.17341/gazimmfd.695323.
ISNAD Yavuz, Şahin - Karagülle, Hira. “Tek Eksenli Epoksi-Cam Kompozit manipülatörün titreşim kontrolünün FFT yöntemi Ile Analizi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 36/2 (Mart 2021), 684-700. https://doi.org/10.17341/gazimmfd.695323.
JAMA Yavuz Ş, Karagülle H. Tek eksenli epoksi-cam kompozit manipülatörün titreşim kontrolünün FFT yöntemi ile analizi. GUMMFD. 2021;36:684–700.
MLA Yavuz, Şahin ve Hira Karagülle. “Tek Eksenli Epoksi-Cam Kompozit manipülatörün titreşim kontrolünün FFT yöntemi Ile Analizi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, c. 36, sy. 2, 2021, ss. 684-00, doi:10.17341/gazimmfd.695323.
Vancouver Yavuz Ş, Karagülle H. Tek eksenli epoksi-cam kompozit manipülatörün titreşim kontrolünün FFT yöntemi ile analizi. GUMMFD. 2021;36(2):684-700.