Asimetrik düz dişli dövme işleminin üst sınır enerji metodu ile analizi
Yıl 2021,
, 333 - 346, 01.12.2020
Ömer Eyercioğlu
,
Gülağa Taş
,
Mehmet Aladağ
Öz
Asimetrik dişliler özellikle tek yönlü güç ve hareket iletiminin olduğu uygulamalarda simetrik dişlilere göre daha üstün performansları nedeniyle tercih edilmektedirler. Asimetrik dişlilerin imalatında, hassas dövmecilik teknolojisinin kullanılması ile profilden kaynaklanan imalat sınırlandırmaların ortadan kaldırılması ve yüksek mukavemete sahip dişlilerin verimli bir şekilde üretilmesi mümkün olacaktır. Bu çalışmada, asimetrik düz dişlilerin hassas dövme işleminde, üst sınır enerji metodu (ÜSEM) kullanılarak dövme yükü ve malzeme akışının belirlenmesi için bir analiz sunulmuştur. Bu analizde, asimetrik dişin süren ve sürülen tarafları 12 şekil değiştirme bölgesine ayrılmıştır. Yapılan analizde, iş parçası malzemesinin isotropik ve homojen olduğu, dövme sırasında pekleşmediği, simetri ekseni boyunca malzeme geçişi olmadığı ve simetri ekseni üzerinde malzeme akış hızlarının eşit olduğunu varsayılmıştır. Bölgesel malzeme akış hızlarının hesaplanması ve enerji denklemlerinin çözümü, Python programlama dilinde geliştirilen bir yazılımla gerçekleştirilmiş ve interaktif bir kullanıcı arayüzü sunulmuştur. Prototip bir asimetrik dişli için dövme deneyleri yapılarak elde edilen sonuçlar üst sınır enerji analizi (ÜSEA ) sonuçlarıyla karşılaştırılmıştır. ÜSEA ile elde edilen dövme yükü değişimi ve malzeme akışı, deneysel sonuçlarla benzer olup maksimum dövme yükü göre %10’un altında bir sapma göstermiştir. Geliştirilen yazılım ile dövme yükü kısa bir süre içerisinde hesaplanabilmektedir. Hesaplanan maksimum dövme yükünün deneysel olarak belirlenenden daha yüksek olması, üst sınır enerji metodunun özelliğinden kaynaklanmakta olup, kalıp tasarımı ve pres kapasitesinin belirlenmesinde emniyetli bölgede kalmak için uygundur.
Destekleyen Kurum
TÜBİTAK
Teşekkür
Bu çalışmayı (Proje No. 217M063) destekleyen Türkiye Bilimsel ve Teknolojik Araştırma Kurumu’na (TÜBİTAK) katkılarından dolayı teşekkür ederiz.
Kaynakça
- L. Liming and L. Guimin, “Dynamic simulation analysis of asymmetric involute gear drive system,” Applied Mechanics and Materials, vol. 215–216, pp. 974–977, 2012.
- M. Banica and S. Ravai-Nagy, “Manufacturing Precision on the Numeric Simulation of Spur Gear with Asymmetric Teeth,” Applied Mechanics and Materials, vol. 809–810, pp. 772–777, 2015.
- V. Senthil Kumar, D. V. Muni, and G. Muthuveerappan, “Optimization of asymmetric spur gear drives to improve the bending load capacity,” Mechanism and Machine Theory, vol. 43, no. 7, pp. 829–858, 2008.
- T. Costopoulos and V. Spitas, “Reduction of gear fillet stresses by using one-sided involute asymmetric teeth,” Mechanism and Machine Theory, vol. 44, no. 8, pp. 1524–1534, 2009.
- V. Spitas, C. Spitas, and T. Costopoulos, “Reduction of tooth fillet stresses using novel one-sided involute asymmetric gear design,” Mechanics Based Design of Structures and Machines, vol. 37, no. 2, pp. 157–182, 2009.
- S. C. Yang, “Mathematical model of a helical gear with asymmetric involute teeth and its analysis,” International Journal of Advanced Manufacturing Technology, vol. 26, no. 5–6, pp. 448–456, 2005.
- N. Li, W. Li, N. Liu, and H. Liu, “Analytical method on contact stress of helical gear with asymmetric involutes,” Advanced Materials Research, vol. 321, pp. 157–160, 2011.
- S. C. Yang, “Study on an internal gear with asymmetric involute teeth,” Mechanism and Machine Theory, vol. 42, no. 8, pp. 977–994, 2007.
- T. G. Yilmaz, O. Doǧan, C. Yüce, and F. Karpat, “Improvement of loading capacity of internal spur gear with using asymmetric trochoid profile,” ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE), vol. 11, no. 2009, pp. 1–8, 2017.
- T. Masuyama and N. Miyazaki, “Evaluation of load capacity of gears with an asymmetric tooth profile,” International Journal of Mechanical and Materials Engineering, vol. 11, no. 1, 2016.
- A. Kapelevich, “Geometry and design of involute spur gears with asymmetric teeth,” Mechanism and Machine Theory, vol. 35, no. 1, pp. 117–130, 2000.
- P. Marimuthu and G. Muthuveerappan, “Investigation of load carrying capacity of asymmetric high contact ratio spur gear based on load sharing using direct gear design approach,” Mechanism and Machine Theory, vol. 96, pp. 52–74, 2016.
- Kelley, M., Danis, L., Precision Flow Forged Gears, Metals Eng. Quarterly, November 1974: 20-22.
- Eyercioglu, 0., Walton, D., Dean, T.A., 1997, Comparative Bending Fatigue Strength of Precision Forged Spur Gears, Proc. Instn. Mech Engrs IMechE, Part C, September, 1997; 211: 293-299.
- Benedict, D.K., Forged Straight Bevel Gears-An Overview, AGMA paper no 84-1949, 1984.
- Townsand, D.P., Bamberger, E.N., Zaretsky, E.V., A life Study of Ausforged, Standard Forged and Standard Machined AlSI M-50 Spur gears, Transactions. of ASME, Journal of Lubrication Tech., July 1976: 418-425.
- Lehnhoff, T.F., Chen, H, Ardayfio, D.D., Surface Durability of Forged and Machined Steel Gears, ASME paper 83-DE-6,1983.
- Eyercioglu, 0., Developments and performance analyses of precision forged spur gears, PhD. Thesis, School of Man. And Mech. Eng., The University of Birmingham, England, 1995.
- Eyercioglu, O., Dean, T:A., Walton, D., Precision Forging of Gears, 7th Int. Mach. Des. and Prod Conf. Ankara, Turkey,1996:433-442.
- Cai, J., Dean, T. A. and Hu, Z. M. Alternative Die Designs in Net-Shape Forging of Gears, J. Mater. Proc. Tech. 150(1), 48-55, 2004
- Zadshakouyan, M., Sobbouhi, E. A. and Jafarzadeh, H., A Study on the Heading of Spur Gears: Numerical Analysis and Experiments, Int. J. of Mech. Aerospace, Industrial, Mechatronic Manuf. Eng. V3, n4, 380-384, 2009.
- Yang, C., Zhao, S. and Zhang, J., Precision Forging of Spur Gear by Flow Control Forming Method, Australian j. of Mech. Eng. v12, n1, 101-109, 2014.
- Zuo, B., Wang, B., Li, Z., Zheng, M. and Zhu, X. Design of Relief-Cavity in Closed-Precision Forging of Gears, j. Cent. South Univ. 22, 1287-1297, 2015. DOI: 10.1007/s11771-015-2645-0
- T. S. Yang and Y. C. Hsu, “A finite element analysis for the forging process of hollow spur gear,” Materials Science Forum, vol. 505–507, no. PART 2, pp. 733–738, 2006.
- W. Feng, L. Hua, and X. Han, “Finite element analysis and simulation for cold precision forging of a helical gear,” Journal of Central South University, vol. 19, no. 12, pp. 3369–3377, 2012.
- Z. Zhang and J. Xie, “A numerical simulation of super-plastic die forging process for Zr-based bulk metallic glass spur gear,” Materials Science and Engineering A, vol. 433, no. 1–2, pp. 323–328, 2006.
- Abdul, N.A. and Dean, T.A, An Analysis of The Forging of Spur Gear Forms, Int J Mach Tool Des Res, 1986;26(2):113-123.
- Grover, 0.P. and Juneja, B.L., Analysis of Closed-die Forging of Gear Like Element, Adv Tech Plasticity, 1984; 888-893.
- Chitkara, N.R. and Bhutta, M.A:, Forging and Heading of Hollow Spur Gear Forms: An Analysis and Some Experiments, Int J Mech Sci 1999;41:1159-1189.
- Choi, J.C. and Choi, Y., A Study on the Forging of External Spur Gears: Upper Bound Analyses and Experiments, Int J Mach Tool Des Res, 1998; 38:1193-1208.
- Choi, J, Cho, H. Y. and Jo, C. Y., An Upper-Bound Analysis for the Forging of Spur Gears, J. Mater. Proc. Tech. 104, 67-73, 2000.
- Sadeghi, M.H., Precision Forging Axisymmetric Shapes, Straight and Helical Spur Gears, PhD. Thesis, School of Man. And Mech. Eng., The University of Birmingham, England, 1989.
- Sadeghi, M. H. Gear Forging: Mathematical Modeling and Experimental Validation, J. of Manuf. Science and Engineering, 125(4), 753-762, 2003
- Rasaee, S., Haghighat, H. and Zahedi, M., Modelling and Upper Bound Analysis of Involute Spur Gear Precision Forging, Int. Res. J. of Applied and Basic Sciences, 4(7), 1676-1682, 2013.
- N. R. Chitkara and Y. J. Kim, “Near-net shape forging of a crown gear: Some experimental results and an analysis,” International Journal of Machine Tools and Manufacture, vol. 41, no. 3, pp. 325–346, 2001.
- H. H. Hsu, “A study on precision forging of spur gear forms and spline by the upper bound method,” International Journal of Mechanical Sciences, vol. 44, no. 8, pp. 1543–1558, 2002.