Araştırma Makalesi
BibTex RIS Kaynak Göster

Kalite ve maliyet perspektiflerinden pirinç alaşımı harmanlama problemi: çok amaçlı bir optimizasyon yaklaşımı

Yıl 2021, , 433 - 446, 01.12.2020
https://doi.org/10.17341/gazimmfd.732960

Öz

Pirinç alaşımı ana olarak bakir (Cu) ve çinko (Zn)`dan oluşan ve gerekli hallerde kursun (Pb), demir (Fe), alüminyum (Al), kalay (Sn), nikel (Ni), antimon (Sb) elementlerini de içeren bir malzemedir. Pirinç alaşımı dökümü sürecinde en temel problemlerden biri, istenilen element oranlarını sağlayacak şekilde hangi saf ve hangi hurda malzemelerin ne miktarlarda karıştırılacağını araştıran harmanlama problemidir. Saf malzemelerin içeriği kesin bir şekilde bilinmektedir, ancak pahalıdır: hurda malzemeler ise ucuzdur, fakat içeriklerindeki element oranları değişkendir. Literatürde yoğun olarak maliyet minimizasyonunu amaçlayan stokastik matematiksel modeller geliştirilmiştir. Ancak bu modellerin çözümünde bazı elementlerin oranları spesifikasyon sınırlarına eşit çıkar. Dolayısıyla, model çözümlerine göre dökülen pirinç alaşımları spesifikasyon sınırı dışına taşabilmekte ve kalite problemlerinde neden olmaktadır. Bir kalite ölçeği olarak süreç yetenek indisini maksimize etmeyi amaçlayarak bu problemi çözmeye çalışan çalışmalar da mevcuttur. Ancak süreç yetenek indisinin artması ile harman maliyeti de artmaktadır. Bu çalışmada, literatürde ilk kez hem harman maliyetini minimize etmeyi hem de süreç yetenek indisini maksimize etmeyi hedefleyen çok amaçlı bir stokastik matematiksel model geliştirilmiştir. Geliştirilen model şans kısıtlı programlama kullanılarak doğrusal olmayan deterministik eşleniğine dönüştürülmüş ve bulanık programlama yardımı ile tek amaçlı yapıya çevrilmiştir. Geliştirilen modelin gerçek hayat problemlerinde etkin bir şekilde kullanılabilmesi için bir çözüm prosedürü önerilmiştir. Geliştirilen model ve önerilen çözüm prosedürü bir pirinç fabrikasından elde edilen verilerle çözülmüştür. Sonuçlar model ve prosedürün başarılı bir şekilde kullanılabileceğini göstermektedir.

Kaynakça

  • 1. Stigler, G,, The cost of subsistence, Journal of Farm Economics, 27(2), 303-314, 1945,
  • 2. Vismara P,, Remi C,, and Gilles T, Constrained Global Optimization for Wine Blending, Constraints, 21 (4), 597–615, 2016,
  • 3. Cerdá J,, Pautasso P,C,, and Cafaro D,C,, Optimizing Gasoline Recipes and Blending Operations Using Nonlinear Blend Models, Industrial and Engineering Chemistry Research, 55 (28), 7782–7800, 2016,
  • 4. Wilson E,, Willis R,, Microcomputers and linear programming – Feedstock revisited, European Journal of Operational Research, 19, 297-304, 1985,
  • 5. Kim J,, Lewis R, L,, A large scale linear programming application to least cost charging for foundry melting operations, American Foundrymens’ Society Transactions, 95, 735–744, 1987,
  • 6. De Cock H,C,, Sinclair M,, Multi-mix feedstock problems on microcomputers, Operational Research Quarterly, 38, 585-590, 1987,
  • 7. Munford, A,G,, A microcomputer system of formulating animal diets which may involve liquid raw materials, European Journal of Operational Research, 41, 270–276, 1989,
  • 8. Al-Shammari M,, Dawood I,, Linear programming applied to a production blending problem: A spreadsheet modeling approach, Production and Inventory Management, 38, 1-7, 1997,
  • 9. Buehlmann U,, Ragsdale C, T,, and Gfeller B,, A spreadsheet-based decision support system for wood panel Manufacturing, Decision Support Systems, 29, 207-227, 2000,
  • 10. Liu C,M,, Sherali H, D,, A Coal Shipping and Blending Problem for an Electric Utility Company, Omega, 28, 433-444, 2000,
  • 11. Sakalli U, S,, Birgoren B,, A Spreadsheet-Based Decision Support Tool for Blending Problems in Brass Casting Industry, Computers & Industrial Engineering, 56 (2), 724–35, 2009,
  • 12. Atac B,, Adiguzel D,, Tuylu S,, ve Alp B, S,, Study of the Optimal Aggregate Blending Model for Quarries, Environmental Earth Sciences, 75(19), 1–11, 2016,
  • 13. Williams, H,P,, Model building in Mathematical Programming, Wiley, New York, 1989,
  • 14. Ashayeri J,, Van Eijs A,G,M,, and Nederstigt P,, Blending Modelling in a Process Manufacturing: A Case Study, European Journal of Operational Research, 72 (3), 460–68, 1994,
  • 15. Amini S, H,, Vass C,, Shahabi M,, and Noble A,, Optimization of Coal Blending Operations under Uncertainty – Robust Optimization Approach, International Journal of Coal Preparation and Utilization, 1–21, 2019,
  • 16. Bliss N, G,, Advances in Scrap Charge Optimization, In One Hundred First Annual Meeting of the American Foundrymen’s Society, Rosemont, 27–30, 1997,
  • 17. Candler W,, Coal blending with acceptance sampling, Computers and Operations Research, 18, 591-596, 1991,
  • 18. Shih J,, Frey H,, Coal blending optimization under uncertainty, European Journal of Operational Research, 83, 452–465, 1995,
  • 19. Blanchard-Gaillard D,, Yano C,A,, Leung J,M,Y,, and Brown M, J,, Discrete deterministic and stochastic blending problems with two quality characteristics: aluminum blending, IIE Transactions, 31, 1001-1009, 1999,
  • 20. Kumral M,, Application of chance-constrained programming based on multi-objective simulated annealing to solve a mineral blending problem, Engineering Optimization, 35(6), 661–673, 2003,
  • 21. Lu M,, Qian J,, Ekşioǧlu S,D,, and Roni M,S,, Stochastic Models for an Optimal Blending of Biomass under Cost, Quality and Uncertainty Considerations, 67th Annual Conference and Expo of the Institute of Industrial Engineers , 1103–9, 2017,
  • 22. Gholamnejad J,, Azimi A,, and Teymouri M, R,, Application of stochastic programming for iron ore quality control, Journal of Mining and Environment, 9(2), 331-338, 2018,
  • 23. Noh N, M,, Bahar A,, and Zainuddin Z, M,, Scenario Based Two-Stage Stochastic Programming Approach for the Midterm Production Planning of Oil Refinery, Matematika: Malaysian Journal of Industrial and Applied Mathematics, 34(3), 45-55, 2018,
  • 24. Kumar A,, and Dimitrakopoulos R,, Application of simultaneous stochastic optimization with geometallurgical decisions at a copper–gold mining complex, Mining Technology, 128(2), 88-105, 2019,
  • 25. Rong A,, and Lahdelma R,, Fuzzy Chance Constrained Linear Programming Model for Optimizing the Scrap Charge in Steel Production, European Journal of Operational Research 186 (3), 953–64, 2008,
  • 26. Sakalli Ü, S,, & Birgören B,, Joint optimization of quality and cost in brass casting using stochastic programming, Engineering Optimization, 1-13, 2019,
  • 27. Montgomery D,C,, Introduction to Statistical Quality Control 6th ed, John Wiley & Sons, New York, 2012,
  • 28. Sakalli Ü,,S,, Döküm sanayinde harmanlama problemleri için olabilirlik ve olasılık teorisi tabanlı modelleme ve çözüm yaklaşımları, Doktora Tezi, Gazi Üniversitesi, Fen Bilimleri Enstitüsü, Ankara, 2010,
  • 29. Sakallı Ü, S,, Baykoç Ö, F,, ve Birgören B,, Stochastic Optimization for Blending Problem in Brass Casting Industry, Annals of Operations Research, 186 (1), 141–57, 2011,
  • 30. Lu J,, Zhang G,, Ruan D,, Wu F,, Multi-Objective Group Decision Making Methods, Software and Applications With Fuzzy Set Techniques, Imperial College Press, London, 2007,
  • 31. Zimmermann, H,J,, Fuzzy programming and linear programming with several objective functions, Fuzzy Sets and Systems, 1, 45–55, 1978,
Toplam 31 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Burak Birgören 0000-0001-9045-6092

Ümit Sakallı 0000-0002-1695-3151

Yayımlanma Tarihi 1 Aralık 2020
Gönderilme Tarihi 6 Mayıs 2020
Kabul Tarihi 19 Eylül 2020
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Birgören, B., & Sakallı, Ü. (2020). Kalite ve maliyet perspektiflerinden pirinç alaşımı harmanlama problemi: çok amaçlı bir optimizasyon yaklaşımı. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 36(1), 433-446. https://doi.org/10.17341/gazimmfd.732960
AMA Birgören B, Sakallı Ü. Kalite ve maliyet perspektiflerinden pirinç alaşımı harmanlama problemi: çok amaçlı bir optimizasyon yaklaşımı. GUMMFD. Aralık 2020;36(1):433-446. doi:10.17341/gazimmfd.732960
Chicago Birgören, Burak, ve Ümit Sakallı. “Kalite Ve Maliyet Perspektiflerinden Pirinç alaşımı Harmanlama Problemi: çok amaçlı Bir Optimizasyon yaklaşımı”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 36, sy. 1 (Aralık 2020): 433-46. https://doi.org/10.17341/gazimmfd.732960.
EndNote Birgören B, Sakallı Ü (01 Aralık 2020) Kalite ve maliyet perspektiflerinden pirinç alaşımı harmanlama problemi: çok amaçlı bir optimizasyon yaklaşımı. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 36 1 433–446.
IEEE B. Birgören ve Ü. Sakallı, “Kalite ve maliyet perspektiflerinden pirinç alaşımı harmanlama problemi: çok amaçlı bir optimizasyon yaklaşımı”, GUMMFD, c. 36, sy. 1, ss. 433–446, 2020, doi: 10.17341/gazimmfd.732960.
ISNAD Birgören, Burak - Sakallı, Ümit. “Kalite Ve Maliyet Perspektiflerinden Pirinç alaşımı Harmanlama Problemi: çok amaçlı Bir Optimizasyon yaklaşımı”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 36/1 (Aralık 2020), 433-446. https://doi.org/10.17341/gazimmfd.732960.
JAMA Birgören B, Sakallı Ü. Kalite ve maliyet perspektiflerinden pirinç alaşımı harmanlama problemi: çok amaçlı bir optimizasyon yaklaşımı. GUMMFD. 2020;36:433–446.
MLA Birgören, Burak ve Ümit Sakallı. “Kalite Ve Maliyet Perspektiflerinden Pirinç alaşımı Harmanlama Problemi: çok amaçlı Bir Optimizasyon yaklaşımı”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, c. 36, sy. 1, 2020, ss. 433-46, doi:10.17341/gazimmfd.732960.
Vancouver Birgören B, Sakallı Ü. Kalite ve maliyet perspektiflerinden pirinç alaşımı harmanlama problemi: çok amaçlı bir optimizasyon yaklaşımı. GUMMFD. 2020;36(1):433-46.