Yeni tip koronavirüs (Covid-19), hem insanlarda hem de hayvanlarda hastalığa sebep olan koronavirüs ailesinin bir üyesidir. Covid-19, Dünya Sağlık Örgütü tarafından pandemi olarak tanımlandırılan ve tüm dünyada salgınlaşarak insanlar için sonucu ölüme kadar gidebilecek riske sahiptir. Covid-19 tanısı konulabilmesi için şüpheli bireyden RT-PCR testi ile tanının doğrulanması gerekmektedir. Fakat bu testin sonuçlanması hem uzun zaman almakta hem de yanlış negatif sonuçlar ile çok sık karşılaşılabilmektedir. Covid-19 tanısı ne kadar erken ve doğru olursa, hayat kaybı risk oranı birey için o derece az olmaktadır. Derin öğrenme, özellikle tıp alanında son derece yüksek doğruluk ve hassasiyet gerektiren çeşitli karmaşık problemleri çözmek için çeşitli uygulamalarda yaygın olarak kullanılmıştır. Bu çalışmada, akciğer X-Ray görüntülerinden otomatik Covid-19 tanısı, önerilen çok kanallı CNN yöntemi kullanılarak yapılmaktadır. Hasta ve sağlıklı bireylerden elde edilen X-Ray görüntüleri çevrimiçi olarak üç ayrı veri tabanından elde edilmiştir. Sonuçları karşılaştırmak ve önerilen yöntemin verimliliğini ortaya koymak için tekrarlayan derin sinir ağları (SRN) mimarisi de aynı problem için uygulanmıştır. Ayrıca, çalışmanın performansını, doğruluğunu ve verimliliğini ortaya koymak için uygulanan yöntemler için doğruluk, hassasiyet analizi ve işlem sürelerinin ölçümleri yapılmıştır. Önerilen sistem ile PCR testi sonucu beklenmeden kısa sürede Covid-19 tanısı konarak, virüs vücutta etkisini ve hayati riski arttırmadan önlem alınması sağlanmaktadır. Bu çalışmada; tüm dünyada insan yaşamı için büyük bir risk olan Covid-19 ‘un erken tespiti için CNN'ye dayalı yeni bir yöntem önerilmektedir. Literatürdeki çalışmalardan farklı olarak, beş evrişim kanalına sahip olan çok kanallı CNN mimarisi sunumu ve bu kanalların ürettiği sonuçlar arasında en belirgin özellik filtrelerini seçmek için önerilen çok kanallı CNN mimarisinde kanal seçim formülü ortaya konmaktadır
Covid-19 Önerilen çok kanallı CNN mimarisi Kanal seçimi Akciğer X-Ray Tanı Derin öğrenme
Yazar, araştırmanın okunabilirliğini, düzenini ve organizasyonunu önemli ölçüde artırmaya yardımcı olan değerli yorumları ve katkıları için hakemlere ve editörlere teşekkür eder.
Birincil Dil | Türkçe |
---|---|
Konular | Mühendislik |
Bölüm | Makaleler |
Yazarlar | |
Yayımlanma Tarihi | 2 Eylül 2021 |
Gönderilme Tarihi | 2 Haziran 2020 |
Kabul Tarihi | 10 Mart 2021 |
Yayımlandığı Sayı | Yıl 2021 |