BibTex RIS Kaynak Göster

DEMİRYOLU ÇİZELGELEME PROBLEMİNİN MODELLENMESİ VE ÇÖZÜMÜ

Yıl 2014, , 0 - , 13.06.2014
https://doi.org/10.17341/gummfd.18951

Öz

Bu çalışmada, trenlerdeki gecikmelerle ilgili sorunlara çözüm bulmak için önerilerde bulunulmuştur. Bu makalede ilk olarak 16 istasyonlu 6 trenin çalıştığı Yeniçubuk-Çetinkaya demiryolu hattı ele alınmış ve gecikmeleri azaltmak için 0-1 tamsayılı programlama modeli önerilmiştir. Bu model sonucunda, elde edilen verilerle tren hareket saatleri düzenlenmiş ve gecikmelerde % 81,59 oranında iyileşme sağlanmıştır. Ayrıca ele alınan toplam 240 km’lik hat için, trenlerin gecikmesine yol açan 31 km’lik kısmında çift hatta dönüştürülmesi durumunda gecikmelerin % 96,52 oranında iyileştirme olacağı benzetim çalışması ile gösterilmiştir.

Kaynakça

  • Eren, T., Güner, E., “A Literature Survey for Multicriteria Scheduling Problems on Single and Parallel Machines”, Journal of The Faculty of Engineering and Architecture of Gazi University, 17 (4), 37-69, 2002.
  • Eren, T., “Solving Scheduling Problem with Time Dependent Learning Effect to Number ofTtardy Jobs and Range of Lateness Criteria”, Journal of The Faculty of Engineering and Architecture of Gazi University, 27 (4), 875-879, 2012.
  • Eren, T., Güner, E., “Minimizing Total Tardiness in a Scheduling Problem with a Learning Effect", Applied Mathematical Modelling, 31 (7), 1351-1361, 2007.
  • Gültekin, N., Demiryolu Çizelgeleme Probleminin Modellenmesi ve Çözümü, Yüksek Lisans Tezi, Kırıkkale Üniversitesi, Fen Bilimleri Enstitüsü, 2013.
  • Charnes, A., Miller, M.H., “A Model For The Optimal Programming of Railway Freight Train Movements”, Purdue University and Carnegie Institute of Technology, 1956.
  • Petersen, E., Taylor, A.J., “A Structured Model for Rail Line Simulation and Optimization”, Transportation Science, 16: 2, 192-206, 1982.
  • Kraay, D., Harker, P.T., Chen, B., “Optimal Pacing of Trains in Freight Railroads: Model Formulationand Solution”, Operations Research, 39: 1, 82-99, 1991.
  • Higgins, L.F, Kozan, E. “Modelling Single – Line Train Operations”, Transportation Research Record 1489, Journal of the Transportation Research Board, Railroad TransportationResearch, 9-16, 1995.
  • Cordeau, J.F., Toth, P., Vigo, D., “A Survey of Optimization Models for Train Routing and Scheduling”, Transportation Science, 32 (4), 380-404, 1998.
  • Linder, T., Zimmermann, U.T., Train Schedule Optimization in Public Rail Transport, Mathematics—Key Technology for the Future: Joint Projects Between Universities and Industry, 703-716, 2000.
  • Caprara, A., Fischetti, M., Toth, P., “Modeling and Solving The Train Timetabling Problem”, Operations Research, l50 (5),851-861, 2002.
  • Lee, C., Chen, C., “Scheduling of Train Driver ForTaiwanRailway Administration”, Journal of the Eastern Asia Society for Transportation Studies, 5, 292-306, 2003.
  • Ahuja, K.R., Liu, J., Orlin, B.J., Sharma, D., Shughart, A.L., “Solving Real-Life Locomotive Scheduling Problems, Instituefor Operations Research and Management Sciences”, Transportation Science, 39, 503-517, 2005.
  • Chen, C., “Using Integer Programming to Solve the Crew Scheduling Problem in the Taipei Rapid Transit Corporation”, Wseas Transactions on Information Science & Applications, 4: 5, 331-341, 2008.
  • Aydın, G., Tren Çizelgelemesi Problemi, Yüksek Lisans Tezi, Yıldız Teknik Üniversitesi, Fen Bilimleri Enstitüsü, İstanbul, 2009.
  • Reimann, M., Nyström, B., “ACO For The Single Line Train Scheduling Problem”, Working Paper Series. Institute of Productionand Operations Management University of Graz, 2009.
  • Danescu, E., Integration and Interoperability of Rail Transport in Europe. Implications of The Network in Romania and Moldova, DH 34-08.00. 14-Nord Economy, International Economic Relations, 2013.
Toplam 17 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Makaleler
Yazarlar

Nazlı Gültekin Bu kişi benim

Tamer Eren

Yayımlanma Tarihi 13 Haziran 2014
Gönderilme Tarihi 13 Haziran 2014
Yayımlandığı Sayı Yıl 2014

Kaynak Göster

APA Gültekin, N., & Eren, T. (2014). DEMİRYOLU ÇİZELGELEME PROBLEMİNİN MODELLENMESİ VE ÇÖZÜMÜ. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 29(2). https://doi.org/10.17341/gummfd.18951
AMA Gültekin N, Eren T. DEMİRYOLU ÇİZELGELEME PROBLEMİNİN MODELLENMESİ VE ÇÖZÜMÜ. GUMMFD. Haziran 2014;29(2). doi:10.17341/gummfd.18951
Chicago Gültekin, Nazlı, ve Tamer Eren. “DEMİRYOLU ÇİZELGELEME PROBLEMİNİN MODELLENMESİ VE ÇÖZÜMÜ”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 29, sy. 2 (Haziran 2014). https://doi.org/10.17341/gummfd.18951.
EndNote Gültekin N, Eren T (01 Haziran 2014) DEMİRYOLU ÇİZELGELEME PROBLEMİNİN MODELLENMESİ VE ÇÖZÜMÜ. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 29 2
IEEE N. Gültekin ve T. Eren, “DEMİRYOLU ÇİZELGELEME PROBLEMİNİN MODELLENMESİ VE ÇÖZÜMÜ”, GUMMFD, c. 29, sy. 2, 2014, doi: 10.17341/gummfd.18951.
ISNAD Gültekin, Nazlı - Eren, Tamer. “DEMİRYOLU ÇİZELGELEME PROBLEMİNİN MODELLENMESİ VE ÇÖZÜMÜ”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 29/2 (Haziran 2014). https://doi.org/10.17341/gummfd.18951.
JAMA Gültekin N, Eren T. DEMİRYOLU ÇİZELGELEME PROBLEMİNİN MODELLENMESİ VE ÇÖZÜMÜ. GUMMFD. 2014;29. doi:10.17341/gummfd.18951.
MLA Gültekin, Nazlı ve Tamer Eren. “DEMİRYOLU ÇİZELGELEME PROBLEMİNİN MODELLENMESİ VE ÇÖZÜMÜ”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, c. 29, sy. 2, 2014, doi:10.17341/gummfd.18951.
Vancouver Gültekin N, Eren T. DEMİRYOLU ÇİZELGELEME PROBLEMİNİN MODELLENMESİ VE ÇÖZÜMÜ. GUMMFD. 2014;29(2).