Bilyalı dövme işlemi sonrası Tungsten Karbür-Kobalt (WC-Co) sertmetal malzemelerin yorulma performansının incelenmesi
Yıl 2023,
, 269 - 282, 21.06.2022
M. Burak Toparlı
Öz
Bu çalışmada, soğuk dövme kalıpları ve takım ucu gibi imalat sektörü açısından önemli alanlarda kullanılan tungsten karbür-kobalt (WC-Co) sertmetal malzemeler ele alınmıştır. İlgili metal-seramik kompozit malzemelerin yorulma ömrünün artırılması için özellikle havacılık ve otomotiv sanayinde kullanılan bilyalı dövme işlemi uygulanmıştır. Malzeme karakterizasyon testleri sonrası yorulma ömürleri elde edilmiştir. Yüzey pürüzlülük ölçümleri sonucunda, bilyalı dövme işlemi sonrası malzeme Ra ve Rz değerlerinde sırasıyla %113 ve %83’lük artışlar gözlenmiştir. Sertlik ölçümleri neticesinde, yüzeyde %13’lük bir artış olduğu ortaya çıkarılmıştır. Elde edilen derinlik profiline göre sertlik artışından etkilenen bölge derinliğinin yaklaşık 300 µm olduğu saptanmıştır. Yorulma testleri sonucunda bilyalı dövme işlemi sayesinde sertmetal numunelerin yorulma performansında iyileşme elde edilmiştir. Malzemedeki yorulma ömrü artışının bilyalı dövme sonucu elde edilen sertlik artışı sayesinde olduğu belirlenmiştir. Sertlik artışının plastik deformasyon sonucu gerinim sertleşmesi neticesinde olduğu ortaya konmuş, kobalt fazında herhangi bir kristal yapı değişikliği saptanmamıştır. Numunelerin kırılma yüzeyleri yorulma testleri sonrasında taramalı elektron mikroskobu ile incelenmiştir. Yorulma testi sonrasında gözlenen kırılmaların çoklu çatlak başlangıcı sonucu olduğu tespit edilmiştir. Tungsten karbür tanelerin hem bilyalı dövme hem de yorulma testi sonucunda kırıldığı gözlenmiştir. Kırılma esnasında hem tanelerarası hem de taneiçi çatlak ilerleme mekanizmalarının kırılmalara neden olduğu ortaya konmuştur. Ayrıca, incelenen kırılma yüzeylerinde sünek malzemelerde görülen yorulma yivciklerine rastlanmamıştır.
Destekleyen Kurum
TÜBİTAK
Teşekkür
Bu çalışma, Norm Cıvata San. ve Tic. A.Ş. tarafından yürütülmüş olup Türkiye Bilimsel ve Teknolojik Araştırma Kurumu'nun (TÜBİTAK) 316082 numaralı TEYDEB1501 projesi kapsamında desteklenmiştir. Yazar, desteklerinden dolayı Umut İnce, Cenk Kılıçaslan, Barış Tanrıkulu, Sezgin Yurtdaş, Prof. Dr. Mustafa Güden ve Buğra Karahan’a teşekkür eder.
Kaynakça
- 1. Jiang, K., Bezold, A., Broeckmann, C.: Numerical modeling of the progressive damage in the microstructure of WC-Co hardmetals under fatigue loading. Procedia Structural Integrity 23, 451-456 (2019). doi:https://doi.org/10.1016/j.prostr.2020.01.128
- 2. Yang, J., Odén, M., Johansson-Jõesaar, M.P., Llanes, L.: Grinding Effects on Surface Integrity and Mechanical Strength of WC-Co Cemented Carbides. Procedia CIRP 13, 257-263 (2014). doi:https://doi.org/10.1016/j.procir.2014.04.044
- 3. Yang, J., Roa, J.J., Schwind, M., Odén, M., Johansson-Jõesaar, M.P., Llanes, L.: Grinding-induced metallurgical alterations in the binder phase of WC-Co cemented carbides. Materials Characterization 134, 302-310 (2017). doi:https://doi.org/10.1016/j.matchar.2017.11.004
- 4. Yang, Q., Deng, D., Li, J., Chen, L., Guo, S., Liu, J., Chen, H.: Fabrication and mechanical properties of WC-10Co cemented carbides with plate-like WC grains. Journal of Alloys and Compounds 803, 860-865 (2019). doi:https://doi.org/10.1016/j.jallcom.2019.06.328
- 5. Tran, S.: Microstructure investigations of WC-Co cemented carbide containing Eta-phase and Cr. Student thesis, (2018)
- 6. Llanes, L., Torres, Y., Anglada, M.: On the fatigue crack growth behavior of WC–Co cemented carbides: kinetics description, microstructural effects and fatigue sensitivity. Acta Materialia 50(9), 2381-2393 (2002). doi:https://doi.org/10.1016/S1359-6454(02)00071-X
- 7. Stephens, R.I., Fatemi, A., Stephens, R.R., Fuchs, H.O.: Metal Fatigue in Engineering. John Wiley & Sons, (2001)
- 8. Tarragó, J.M., Coureaux, D., Torres, Y., Jiménez-Piqué, E., Schneider, L., Fair, J., Llanes, L.: Strength and reliability of WC-Co cemented carbides: Understanding microstructural effects on the basis of R-curve behavior and fractography. International Journal of Refractory Metals and Hard Materials 71, 221-226 (2018). doi:https://doi.org/10.1016/j.ijrmhm.2017.11.031
- 9. Torres, Y., Anglada, M., Llanes, L.: Fatigue mechanics of WC–Co cemented carbides. International Journal of Refractory Metals and Hard Materials 19(4), 341-348 (2001). doi:https://doi.org/10.1016/S0263-4368(01)00032-4
- 10. García, J., Collado Ciprés, V., Blomqvist, A., Kaplan, B.: Cemented carbide microstructures: a review. International Journal of Refractory Metals and Hard Materials 80, 40-68 (2019). doi:https://doi.org/10.1016/j.ijrmhm.2018.12.004
- 11. Tarragó, J.M., Coureaux, D., Torres, Y., Casellas, D., Al-Dawery, I., Schneider, L., Llanes, L.: Microstructural effects on the R-curve behavior of WC-Co cemented carbides. Materials & Design 97, 492-501 (2016). doi:https://doi.org/10.1016/j.matdes.2016.02.115
- 12. Kanagarajan, D., Sivaraj, P., Seeman, M., Seetharaman, R.: Evaluation of the reliability on WC-40%Co composites through Weibull analysis. Materials Today: Proceedings 22, 519-524 (2020). doi:https://doi.org/10.1016/j.matpr.2019.08.124
- 13. Torres, Y., Tarrago, J.M., Coureaux, D., Tarrés, E., Roebuck, B., Chan, P., James, M., Liang, B., Tillman, M., Viswanadham, R.K., Mingard, K.P., Mestra, A., Llanes, L.: Fracture and fatigue of rock bit cemented carbides: Mechanics and mechanisms of crack growth resistance under monotonic and cyclic loading. International Journal of Refractory Metals and Hard Materials 45, 179-188 (2014). doi:https://doi.org/10.1016/j.ijrmhm.2014.04.010
- 14. Tanrıkulu, B., Karakuzu, R., Ince, U., Kılınçdemir, E.: Grain Size Effect on Fatigue Life of WC-Co40 Mainly Used in Cold Forging Tools. Paper presented at the THERMAM 2016 - International Conference on Thermophysical and Mechanical Properties of Advanced Materials, Izmir, Turkey, 1-3 September 2016
- 15. Benson, M.L., Liaw, P.K., Choo, H., Brown, D.W., Daymond, M.R., Klarstrom, D.L.: Strain-induced phase transformation in a cobalt-based superalloy during different loading modes. Materials Science and Engineering: A 528(18), 6051-6058 (2011). doi:https://doi.org/10.1016/j.msea.2011.03.096
- 16. Ruiz, A., Nagby, P.B.: SAW dispersion measurements for ultrasonic chraracterizaition of surface-treated metals. Instrumentation Measure Metrologie 3(3), 59-85 (2003).
- 17. Karahan, B., Ince, U.: Bilya Püskürtmenin (Shot Peening) Teknik-Teknolojideki Yolculuğu ve Soğuk Dövme Prosesine Adaptasyonu. Derin Ekim, 74-90 (2015).
- 18. Toparli, M.B.: Effect of Shot Peening on Ballistic Limit of Al6061-T651 Aluminium Alloy Plates. Experimental Techniques 44(1), 37-47 (2020). doi:10.1007/s40799-019-00335-x
- 19. Al-Obaid, Y.F.: Shot peening mechanics: experimental and theoretical analysis. Mechanics of Materials 19(2), 251-260 (1995). doi:https://doi.org/10.1016/0167-6636(94)00036-G
- 20. Gerin, B., Pessard, E., Morel, F., Verdu, C.: Influence of surface integrity on the fatigue behaviour of a hot-forged and shot-peened C70 steel component. Materials Science and Engineering: A 686(Supplement C), 121-133 (2017). doi:https://doi.org/10.1016/j.msea.2017.01.041
- 21. Chang, S.-H., Lee, S.-C., Tang, T.-P.: Effect of Shot Peening Treatment on Forging Die Life. MATERIALS TRANSACTIONS 49(3), 619-623 (2008). doi:10.2320/matertrans.MER2007622
- 22. Tarragó, J.M., Ferrari, C., Reig, B., Coureaux, D., Schneider, L., Llanes, L.: Mechanics and mechanisms of fatigue in a WC–Ni hardmetal and a comparative study with respect to WC–Co hardmetals. International Journal of Fatigue 70, 252-257 (2015). doi:https://doi.org/10.1016/j.ijfatigue.2014.09.011
- 23. Tarragó, J.M., Roa, J.J., Valle, V., Marshall, J.M., Llanes, L.: Fracture and fatigue behavior of WC–Co and WC–CoNi cemented carbides. International Journal of Refractory Metals and Hard Materials 49, 184-191 (2015). doi:https://doi.org/10.1016/j.ijrmhm.2014.07.027
- 24. Klünsner, T., Morstein, M., Marsoner, S., Deller, M., Marklein, B.: Fatigue life equality of polished and electrical discharge machined WC-Co hard metal achieved solely by wet blasting. International Journal of Refractory Metals and Hard Materials 59, 61-66 (2016). doi:https://doi.org/10.1016/j.ijrmhm.2016.05.001
- 25. ISO: Hardmetals - Determination of transverse rupture strength. In. (2009)
- 26. Tran, S.: Microstructure investigations of WC-Co cemented carbide containing ɳ-phase and Cr. Uppsala University (2018)
- 27. Withers, P.J., Buschow, K.H.J., Robert, W.C., Merton, C.F., Bernard, I., Edward, J.K., Subhash, M., Patrick, V.: Residual Stresses: Measurement by Diffraction. In: Encyclopedia of Materials: Science and Technology. pp. 8158-8169. Elsevier, Oxford (2001)
- 28. Meng, Q., Guo, S., Zhao, X., Veintemillas-Verdaguer, S.: Bulk metastable cobalt in fcc crystal structure. Journal of Alloys and Compounds 580, 187-190 (2013). doi:https://doi.org/10.1016/j.jallcom.2013.05.115
Fatigue Performance of Tungsten Carbide Cobalt (WC-Co) Hardmetals After Shot Peening
Yıl 2023,
, 269 - 282, 21.06.2022
M. Burak Toparlı
Kaynakça
- 1. Jiang, K., Bezold, A., Broeckmann, C.: Numerical modeling of the progressive damage in the microstructure of WC-Co hardmetals under fatigue loading. Procedia Structural Integrity 23, 451-456 (2019). doi:https://doi.org/10.1016/j.prostr.2020.01.128
- 2. Yang, J., Odén, M., Johansson-Jõesaar, M.P., Llanes, L.: Grinding Effects on Surface Integrity and Mechanical Strength of WC-Co Cemented Carbides. Procedia CIRP 13, 257-263 (2014). doi:https://doi.org/10.1016/j.procir.2014.04.044
- 3. Yang, J., Roa, J.J., Schwind, M., Odén, M., Johansson-Jõesaar, M.P., Llanes, L.: Grinding-induced metallurgical alterations in the binder phase of WC-Co cemented carbides. Materials Characterization 134, 302-310 (2017). doi:https://doi.org/10.1016/j.matchar.2017.11.004
- 4. Yang, Q., Deng, D., Li, J., Chen, L., Guo, S., Liu, J., Chen, H.: Fabrication and mechanical properties of WC-10Co cemented carbides with plate-like WC grains. Journal of Alloys and Compounds 803, 860-865 (2019). doi:https://doi.org/10.1016/j.jallcom.2019.06.328
- 5. Tran, S.: Microstructure investigations of WC-Co cemented carbide containing Eta-phase and Cr. Student thesis, (2018)
- 6. Llanes, L., Torres, Y., Anglada, M.: On the fatigue crack growth behavior of WC–Co cemented carbides: kinetics description, microstructural effects and fatigue sensitivity. Acta Materialia 50(9), 2381-2393 (2002). doi:https://doi.org/10.1016/S1359-6454(02)00071-X
- 7. Stephens, R.I., Fatemi, A., Stephens, R.R., Fuchs, H.O.: Metal Fatigue in Engineering. John Wiley & Sons, (2001)
- 8. Tarragó, J.M., Coureaux, D., Torres, Y., Jiménez-Piqué, E., Schneider, L., Fair, J., Llanes, L.: Strength and reliability of WC-Co cemented carbides: Understanding microstructural effects on the basis of R-curve behavior and fractography. International Journal of Refractory Metals and Hard Materials 71, 221-226 (2018). doi:https://doi.org/10.1016/j.ijrmhm.2017.11.031
- 9. Torres, Y., Anglada, M., Llanes, L.: Fatigue mechanics of WC–Co cemented carbides. International Journal of Refractory Metals and Hard Materials 19(4), 341-348 (2001). doi:https://doi.org/10.1016/S0263-4368(01)00032-4
- 10. García, J., Collado Ciprés, V., Blomqvist, A., Kaplan, B.: Cemented carbide microstructures: a review. International Journal of Refractory Metals and Hard Materials 80, 40-68 (2019). doi:https://doi.org/10.1016/j.ijrmhm.2018.12.004
- 11. Tarragó, J.M., Coureaux, D., Torres, Y., Casellas, D., Al-Dawery, I., Schneider, L., Llanes, L.: Microstructural effects on the R-curve behavior of WC-Co cemented carbides. Materials & Design 97, 492-501 (2016). doi:https://doi.org/10.1016/j.matdes.2016.02.115
- 12. Kanagarajan, D., Sivaraj, P., Seeman, M., Seetharaman, R.: Evaluation of the reliability on WC-40%Co composites through Weibull analysis. Materials Today: Proceedings 22, 519-524 (2020). doi:https://doi.org/10.1016/j.matpr.2019.08.124
- 13. Torres, Y., Tarrago, J.M., Coureaux, D., Tarrés, E., Roebuck, B., Chan, P., James, M., Liang, B., Tillman, M., Viswanadham, R.K., Mingard, K.P., Mestra, A., Llanes, L.: Fracture and fatigue of rock bit cemented carbides: Mechanics and mechanisms of crack growth resistance under monotonic and cyclic loading. International Journal of Refractory Metals and Hard Materials 45, 179-188 (2014). doi:https://doi.org/10.1016/j.ijrmhm.2014.04.010
- 14. Tanrıkulu, B., Karakuzu, R., Ince, U., Kılınçdemir, E.: Grain Size Effect on Fatigue Life of WC-Co40 Mainly Used in Cold Forging Tools. Paper presented at the THERMAM 2016 - International Conference on Thermophysical and Mechanical Properties of Advanced Materials, Izmir, Turkey, 1-3 September 2016
- 15. Benson, M.L., Liaw, P.K., Choo, H., Brown, D.W., Daymond, M.R., Klarstrom, D.L.: Strain-induced phase transformation in a cobalt-based superalloy during different loading modes. Materials Science and Engineering: A 528(18), 6051-6058 (2011). doi:https://doi.org/10.1016/j.msea.2011.03.096
- 16. Ruiz, A., Nagby, P.B.: SAW dispersion measurements for ultrasonic chraracterizaition of surface-treated metals. Instrumentation Measure Metrologie 3(3), 59-85 (2003).
- 17. Karahan, B., Ince, U.: Bilya Püskürtmenin (Shot Peening) Teknik-Teknolojideki Yolculuğu ve Soğuk Dövme Prosesine Adaptasyonu. Derin Ekim, 74-90 (2015).
- 18. Toparli, M.B.: Effect of Shot Peening on Ballistic Limit of Al6061-T651 Aluminium Alloy Plates. Experimental Techniques 44(1), 37-47 (2020). doi:10.1007/s40799-019-00335-x
- 19. Al-Obaid, Y.F.: Shot peening mechanics: experimental and theoretical analysis. Mechanics of Materials 19(2), 251-260 (1995). doi:https://doi.org/10.1016/0167-6636(94)00036-G
- 20. Gerin, B., Pessard, E., Morel, F., Verdu, C.: Influence of surface integrity on the fatigue behaviour of a hot-forged and shot-peened C70 steel component. Materials Science and Engineering: A 686(Supplement C), 121-133 (2017). doi:https://doi.org/10.1016/j.msea.2017.01.041
- 21. Chang, S.-H., Lee, S.-C., Tang, T.-P.: Effect of Shot Peening Treatment on Forging Die Life. MATERIALS TRANSACTIONS 49(3), 619-623 (2008). doi:10.2320/matertrans.MER2007622
- 22. Tarragó, J.M., Ferrari, C., Reig, B., Coureaux, D., Schneider, L., Llanes, L.: Mechanics and mechanisms of fatigue in a WC–Ni hardmetal and a comparative study with respect to WC–Co hardmetals. International Journal of Fatigue 70, 252-257 (2015). doi:https://doi.org/10.1016/j.ijfatigue.2014.09.011
- 23. Tarragó, J.M., Roa, J.J., Valle, V., Marshall, J.M., Llanes, L.: Fracture and fatigue behavior of WC–Co and WC–CoNi cemented carbides. International Journal of Refractory Metals and Hard Materials 49, 184-191 (2015). doi:https://doi.org/10.1016/j.ijrmhm.2014.07.027
- 24. Klünsner, T., Morstein, M., Marsoner, S., Deller, M., Marklein, B.: Fatigue life equality of polished and electrical discharge machined WC-Co hard metal achieved solely by wet blasting. International Journal of Refractory Metals and Hard Materials 59, 61-66 (2016). doi:https://doi.org/10.1016/j.ijrmhm.2016.05.001
- 25. ISO: Hardmetals - Determination of transverse rupture strength. In. (2009)
- 26. Tran, S.: Microstructure investigations of WC-Co cemented carbide containing ɳ-phase and Cr. Uppsala University (2018)
- 27. Withers, P.J., Buschow, K.H.J., Robert, W.C., Merton, C.F., Bernard, I., Edward, J.K., Subhash, M., Patrick, V.: Residual Stresses: Measurement by Diffraction. In: Encyclopedia of Materials: Science and Technology. pp. 8158-8169. Elsevier, Oxford (2001)
- 28. Meng, Q., Guo, S., Zhao, X., Veintemillas-Verdaguer, S.: Bulk metastable cobalt in fcc crystal structure. Journal of Alloys and Compounds 580, 187-190 (2013). doi:https://doi.org/10.1016/j.jallcom.2013.05.115