BibTex RIS Kaynak Göster

KÜRESEL EN İYİ YAPAY ARI KOLONİ ALGORİTMASI İLE OTOMATİK KÜMELEME

Yıl 2014, , 0 - , 31.12.2014
https://doi.org/10.17341/gummfd.00459

Öz

Kümeleme, verilerin analiz edilmesi için önemli bir teknik olup görüntü işleme ve istatistiksel veri analizi başta olmak üzere birçok alanda kullanılmaktadır. Özellikle son yıllarda kümeleme probleminin çözümüne yönelik olarak yapılan çalışmaların arttığı görülmektedir. Bu çalışmada, otomatik kümeleme problemini çözmek amacıyla yapay arı koloni algoritmasının küresel araştırma kabiliyeti geliştirilmiş ve algoritmanın vektörel araştırma yapabilmesi sağlanmıştır. Önerilen yöntem en çok bilinen data ve görüntü setleri üzerinde test edilmiştir. Alınan sonuçlar neticesinde önerilen metodun diğer metotlara oranla daha iyi bir performans sağladığı ve otomatik kümeleme problemlerinin çözümünde rahatlıkla kullanılabileceği görülmüştür.

Kaynakça

  • Demiralay, M. Hiyerarşik kümeleme metotları ile veri madenciliği uygulamaları, Yüksek Lisans Tezi, Marmara Üniversitesi, Fen Bilimleri Enstitüsü, 2005.
  • Jain, A.K., Murty, M.N., Flynn, P. J., "Data Clustering: A Review", ACM Computing Surveys, Cilt 31, Sayı 3, 264-323, 1999.
  • Manning, C.D., Schutze, H., Foundations Of Statistical Natural Language Processing, 1999.
  • Omran, M., Particle Swarm Optimization Methods for Pattern Recognition and Image Processing, Ph.D., Thesis, University of Pretoria, Environment and Information Technology, 2004.
  • Isık, M., Bölünmeli kümeleme yöntemleri ile veri madenciliği uygulamaları, Yüksek Lisans Tezi, Marmara Üniversitesi, Fen Bilimleri Enstitüsü, İstanbul, 2006.
  • Yesilbudak, M., Kahraman, H. T., Karacan, H., "Object Oriented Agglomerative Hierarchical Clustering Model in Data Mining", Journal of the Faculty of Engineering and Architecture of Gazi University, Cilt 26, Sayı 1, 27-39, 2011.
  • Hamerly, G., Elkan, C., "Alternatives to the K-means Algorithm that Find Better Clusterings," Proceedings of the ACM Conference on Information and Knowledge Management (CIKM-2002), 600–607, 2002.
  • MacQueen, J., "Some methods for classification and analysis of multivariate observations," 5th Berkeley Symp. Math. Stat. Probability, 281–297, 1967.
  • Bezdek, J.C., Pattern Recognition with Fuzzy Objective Function Algoritms. Plenum Press, New York, 1981.
  • Durmuş, M.S., Veri kümeleme algoritmalarının performansları üzerine karşılaştırmalı bir çalışma, Yüksek Lisans Tezi, Pamukkale Üniversitesi, Fen Bilimleri Enstitüsü, 2005.
  • Omran, M. G. H., Salman, A., Engelbrecht, A. P. "Dynamic clustering using particle swarm optimization with application in image segmentation", Pattern Analysis and Applications, Cilt 8, Sayı 4, 332-344, 2006.
  • Das, S., Abraham, A., Konar, A., "Automatic Clustering Using an Improved Differential Evolution Algorithm", IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans, Cilt 38, Sayı 1, 218-237, 2008.
  • Das, S., Konar, A., "Automatic image pixel clustering with an improved differential evolution", Applied Soft Computing, Cilt 9, Sayı 1, 226-236, 2009.
  • Maulik, U., Saha, I., "Automatic Fuzzy Clustering Using Modified Differential Evolution for Image Classification", IEEE Transactions on Geoscience and Remote Sensing, Cilt 48, Sayı 9, 3503-3510, 2010.
  • Ouadfel, S., Batouche, M., Taleb-Ahmed, A., "A Modified Particle Swarm Optimization Algorithm for Automatic Image Clustering", International Symposium on Modelling and Implementation of Complex Systems, MISC’2010, 49-57, 2010.
  • Kuo, R.J., Syu, Y.J., Chen, Z.Y., Tien, F.C., "Integration of particle swarm optimization and genetic algorithm for dynamic clustering", Information Sciences, Cilt 195, 124-140, 2012.
  • Bandyopadhyay, S., Saha, S., "Point Symmetry-Based Distance Measures and Their Applications to Clustering," in Unsupervised Classification, ed: Springer Berlin Heidelberg, 2013, pp. 93-123.
  • Xie, X., Beni, G., "Validity measure for fuzzy clustering", IEEE Trans. Pattern Anal. Machine Learning, Cilt 13, Sayı 4, 841–846, 1991.
  • Bandyopadhyay, S., Saha, S., "A Point Symmetry-Based Clustering Technique for Automatic Evolution of Clusters", IEEE Transactions on Knowledge and Data Engineering, Cilt 20, Sayı 11, 1441-1457, 2008.
  • Bandyopadhyay, S., Saha, S., Maulik, U., Deb, K., "A Simulated Annealing-Based Multiobjective Optimization Algorithm: AMOSA", IEEE Transactions on Evolutionary Computation, Cilt 12, Sayı 3, 269-283, 2008.
  • Saha, S., Bandyopadhyay, S., "A symmetry based multiobjective clustering technique for automatic evolution of clusters", Pattern Recognition, Cilt 43, Sayı 3, 738-751, 2010.
  • Saha, S., Bandyopadhyay, S.İ, "A generalized automatic clustering algorithm in a multiobjective framework", Applied Soft Computing, Cilt 13, Sayı 1, 89-108, 2013.
  • Karaboga, D., Basturk, B., "On the performance of artificial bee colony (ABC) algorithm", Applied Soft Computing, Cilt 8, Sayı 1, 687-697, 2008.
  • Karaboga, D., Okdem, S., Ozturk, C., "Cluster Based Wireless Sensor Network Routing using Artificial Bee Colony Algorithm", Wireless Networks, Cilt 18, Sayı 7, 847-860, 2012.
  • Eke, İ., Taplamacıoglu, M.C., Kocaarslan, İ., "Design of Robust Power System Stabilizer Based On Artifical Bee Colony Algorithm", Journal of the Faculty of Engineering and Architecture of Gazi University, Cilt 26, Sayı 3, 683-690, 2011.
  • Karaboga, D., Ozturk, C., "A novel clustering approach: Artificial Bee Colony (ABC) algorithm", Applied Soft Computing, Cilt 11, Sayı 1, 652-657, 2011.
  • Hancer, E., Ozturk, C., Karaboga, D., "Artificial Bee Colony Based Image Clustering Method," IEEE Congress on Evolutionary Computation (CEC2012), Brisbane, Australia, 1-5, 2012.
  • Ozturk, C., Hancer, E., Karaboga, D. "Improved Clustering Criterion for Image Clustering with Artificial Bee Colony Algorithm", Pattern Analysis and Applications, 2014.
  • Karaboga, D., An idea based on honey bee swarm for numerical optimization. Technical Report-TR06, Erciyes University, Engineering Faculty, Computer Engineering Department, 2005.
  • Dorigo, M., Optimization Learning And Natural Algorithms, Ph.D. Thesis, Politecnico Di Milano, Italy, 1992.
  • Eberhart, R., Kennedy, J., "A new optimizer using particle swarm theory," 6th International Symposium on Micro Machine and Human Science, 1995.
  • Pham, D., Ghanbarzadeh, A., Koc, E., Otri, S., Rahim, S., Zaidi, M., The bees algorithm, Technical report. Cardiff University, UK, Manufacturing Engineering Centre, 2005.
  • Yang, X., Engineering optimizations via nature-inspired virtual bee algorithms, Springer, 2005
  • Lucic, P., Teodorovic, D., "Bee system: modeling combinatorial optimization transportation engineering problems by swarm intelligence", Preprints of the TRISTAN IV Triennial Symposium on Transportation Analysis, Sao Miguel, Azores Islands, Portugal, 441–445, 2001.
  • Teodorovic, D., Dell’orco, M., "Bee colony optimization - a cooperative learning approach to complex transportation problems," 16th mini-EURO Conference on Advanced OR and AI Methods in Transportation, 51–60, 2005.
  • Karaboga, D., Gorkemli, B., Ozturk, C., Karaboga, N., "A comprehensive survey: artificial bee colony (ABC) algorithm and applications", Artificial Intelligence Review, Cilt 42, Sayı 1, 21-57, 2014.
  • Ozturk, C., Yapay Sinir Ağlarının Yapay Arı Koloni Algoritması İle Eğitilmesi, Doktora Tezi., Erciyes Universitesi, Fen Bilimleri Enstitüsü, 2011.
  • Dunn, J. C. "Well separated clusters and optimal fuzzy partitions", J. Cybern., Cilt 4, 95–104, 1974.
  • Calinski, R. B., Harabasz, J. "A dendrite method for cluster analysis", Commun. Stat., Cilt 3, No 1, 1–27, 1974.
  • Davies, D. L., Bouldin, D. W., "A cluster separation measure", IEEE Trans. Pattern Anal. Mach. Intell., Cilt 1, No 1, 224–227, 1979.
  • Chou, C. H., Su, M. C., Lai, E., "A new cluster validity measure and its application to image compression", Pattern Analysis and Applications, Cilt 7, No 2, 205–220, 2004.
  • Turi, R. H., Clustering-Based Colour Image Segmentation, Ph.D. Thesis, Monash University, Australia, 2001.
  • Omran, M., Engelbrecht, A., Salman, A., "Particle Swarm Optimization for Pattern Recognition and Image Processing," in Swarm Intelligence and Data Mining. Cilt. 1, Abraham, A., Grosan, C.Ramos, V., Eds., ed: Springer-Verlag, SCI Series 'Studies in Computational Intelligence', 2006.
  • Jadhav, H.T., Sharma, U., Patel, J., Roy, R., "Gbest guided artificial bee colony algorithm for emission minimization incorporating wind power", 11th International Conference on Environment and Electrical Engineering (EEEIC2012), 1064-1069, 2012.
Toplam 44 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Makaleler
Yazarlar

Celal Özturk

Emrah Hancer Bu kişi benim

Dervis Karaboga

Yayımlanma Tarihi 31 Aralık 2014
Gönderilme Tarihi 31 Aralık 2014
Yayımlandığı Sayı Yıl 2014

Kaynak Göster

APA Özturk, C., Hancer, E., & Karaboga, D. (2014). KÜRESEL EN İYİ YAPAY ARI KOLONİ ALGORİTMASI İLE OTOMATİK KÜMELEME. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 29(4). https://doi.org/10.17341/gummfd.00459
AMA Özturk C, Hancer E, Karaboga D. KÜRESEL EN İYİ YAPAY ARI KOLONİ ALGORİTMASI İLE OTOMATİK KÜMELEME. GUMMFD. Aralık 2014;29(4). doi:10.17341/gummfd.00459
Chicago Özturk, Celal, Emrah Hancer, ve Dervis Karaboga. “KÜRESEL EN İYİ YAPAY ARI KOLONİ ALGORİTMASI İLE OTOMATİK KÜMELEME”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 29, sy. 4 (Aralık 2014). https://doi.org/10.17341/gummfd.00459.
EndNote Özturk C, Hancer E, Karaboga D (01 Aralık 2014) KÜRESEL EN İYİ YAPAY ARI KOLONİ ALGORİTMASI İLE OTOMATİK KÜMELEME. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 29 4
IEEE C. Özturk, E. Hancer, ve D. Karaboga, “KÜRESEL EN İYİ YAPAY ARI KOLONİ ALGORİTMASI İLE OTOMATİK KÜMELEME”, GUMMFD, c. 29, sy. 4, 2014, doi: 10.17341/gummfd.00459.
ISNAD Özturk, Celal vd. “KÜRESEL EN İYİ YAPAY ARI KOLONİ ALGORİTMASI İLE OTOMATİK KÜMELEME”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 29/4 (Aralık 2014). https://doi.org/10.17341/gummfd.00459.
JAMA Özturk C, Hancer E, Karaboga D. KÜRESEL EN İYİ YAPAY ARI KOLONİ ALGORİTMASI İLE OTOMATİK KÜMELEME. GUMMFD. 2014;29. doi:10.17341/gummfd.00459.
MLA Özturk, Celal vd. “KÜRESEL EN İYİ YAPAY ARI KOLONİ ALGORİTMASI İLE OTOMATİK KÜMELEME”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, c. 29, sy. 4, 2014, doi:10.17341/gummfd.00459.
Vancouver Özturk C, Hancer E, Karaboga D. KÜRESEL EN İYİ YAPAY ARI KOLONİ ALGORİTMASI İLE OTOMATİK KÜMELEME. GUMMFD. 2014;29(4).