Araştırma Makalesi
BibTex RIS Kaynak Göster

CuAlTa alaşımına hava atmosferinde uygulanan yüksek sıcaklığın termodinamik parametrelerine ve mikro yapısına etkileri

Yıl 2022, , 1225 - 1236, 28.02.2022
https://doi.org/10.17341/gazimmfd.907419

Öz

Dört farklı oksitlenme işleminin Cu-9Al-5Ta YSŞHA’nın oksidasyon davranışları, faz bileşenleri, mikroyapısal özellikleri ve termodinamik parametreleri üzerine etkileri DTA/TG, XRD, SEM-EDX ve DSC analiz ölçümleri alınarak incelendi. 700, 800, 900 ve 1000°C olarak belirlenen oksitlenme sıcaklıklarında, 900°C’den sonra yüzey oksitlenmenin doygunluğa ulaştığı ve böylece oksitlenme sabitinin yükselmediği gözlendi. Alaşımdaki α(9R), β_1^' (18R), γ_1^' (2H), γ_2 (〖Cu〗_9 〖Al〗_4) ve 〖Ta〗_2 〖Al〗_3 fazlarının oksitlenmesi sonucu, yapılarındaki farklı boyut ve formlar ile yoğunluklarının değiştiği belirlendi. Ancak Ta element miktarınca zengin olan α(9R)ve 〖Ta〗_2 〖Al〗_3 fazlarının oksijene ile difüzyonu zor olması bu faz yoğunluklarının yüksek çıkmasını sağlamıştır. Artan sıcaklıkla oluşan yüzey oksit tabakalarının, martensit ve α(9R) fazlarının büyüyüp genleşmesine sebep olduğu görüldü. α(9R) fazının artan sıcaklıkla kararlı durumunun değişmesi kimyasal bileşimde yerel değişikliklere de yol açtığı belirlendi. Genleşen bu fazların oksit tabakasını zorlayıp yüzeyde kabartı ve yarılma şeklinde oksit yapılarını oluşturduğu gözlendi. Martensit dönüşüm sıcaklık aralığı ile termodinamik parametrelerin, oksitlenme ile küçük değişimler sergilemesine rağmen, martensit dönüşümlerin varlığını etkilemediği DSC analizi ile belirlendi. Ancak alaşım numunelerine aktarılan ısı enerjisinin elastik enerjilerinde düzensiz davranışlar sergilemesine sebep oldu. Faz yapılarının ise artan oksitlenme ile değişmesi, kristalit boyutunu değiştirdi.

Destekleyen Kurum

tubitak

Proje Numarası

119M300

Teşekkür

Bu çalışma TÜBİTAK No: 119M300 projesi kapsamında desteklenmiştir

Kaynakça

  • Referans1 Saud, S.N., Hamzah, E., Bakhsheshi-Rad, H., and Abubakar, T., Effect of Ta additions on the microstructure, damping, and shape memory behaviour of prealloyed Cu-Al-Ni shape memory alloys, Scanning, 2017 2017.
  • Referans2 Aydoğdu, Y., Kürüm, F., Kök, M., Yakinci, Z.D., and Aydoğdu, A., Thermal properties, microstructure and microhardness of Cu–Al–Co shape memory alloy system, Trans. Indian Inst. Met., 67 (4), 595-600, 2014.
  • Referans3 Alaneme, K.K. and Okotete, E.A., Reconciling viability and cost-effective shape memory alloy options–A review of copper and iron based shape memory metallic systems, Eng. Sci. Technol. an Int. J., 19 (3), 1582-1592, 2016.
  • Referans4 Qader, I.N., Kök, M., and Dağdelen, F., Effect of heat treatment on thermodynamics parameters, crystal and microstructure of (Cu-Al-Ni-Hf) shape memory alloy, Physica B, 553 1-5, 2019.
  • Referans5 Wilkes, K.E. and Liaw, P.K., The fatigue behavior of shape-memory alloys, JOM, 52 (10), 45-51, 2000.
  • Referans6 Cederström, J. and Van Humbeeck, J., Relationship between shape memory material properties and applications, Le Journal de Physique IV, 5 (C2), C2-335-C2-341, 1995.
  • Referans7 Silva, R., Paganotti, A., Gama, S., Adorno, A., Carvalho, T., and Santos, C., Investigation of thermal, mechanical and magnetic behaviors of the Cu-11% Al alloy with Ag and Mn additions, Mater. Charact., 75 194-199, 2013.
  • Referans8 Ercan, E., Dagdelen, F., and Qader, I., Effect of tantalum contents on transformation temperatures, thermal behaviors and microstructure of CuAlTa HTSMAs, J. Therm. Anal. Calorim., 139 (1), 29-36, 2020.
  • Referans9 Milhorato, F. and Mazzer, E., Effects of aging on a spray-formed Cu-Al-Ni-Mn-Nb high temperature shape memory alloy, Mater. Sci.Eng., A, 753 232-237, 2019.
  • Referans10Kheirikhah, M.M., Rabiee, S., and Edalat, M.E. A review of shape memory alloy actuators in robotics. in Robot Soccer World Cup. 2010. Springer.
  • Referans11 Derby, S., Sreekumar, M., Nagarajan, T., Singaperumal, M., Zoppi, M., and Molfino, R., Critical review of current trends in shape memory alloy actuators for intelligent robots, Industrial Robot: An International Journal, 2007.
  • Referans12 Furuya, Y. and Shimada, H., Shape memory actuators for robotic applications, Mater. & Des., 12 (1), 21-28, 1991.
  • Referans13 Sımsek, D., Colak, N.Y., Sımsek, I., and Ozyurek, D., Dry Sliding Wear Behaviors of Iron Addition to Nickel–Aluminum Bronze Produced by Mechanical Alloying, Trans. Indian Inst. Met., 73 (2), 319-326, 2020.
  • Referans14 Abdelgnei, M., Omar, M., Ghazali, M., Mohammed, M., and Rashid, B., Dry sliding wear behaviour of thixoformed Al-5.7 Si–2Cu-0.3 Mg alloys at high temperatures using Taguchi method, Wear, 442 203134, 2020. Referans15 Shaik, M.A. and Golla, B.R., Two body abrasion wear behaviour of Cu–ZrB2 composites against SiC emery paper, Wear, 203260, 2020.
  • Referans16 Vajpai, S., Dube, R., and Sangal, S., Application of rapid solidification powder metallurgy processing to prepare Cu–Al–Ni high temperature shape memory alloy strips with high strength and high ductility, Mater. Sci.Eng., A, 570 32-42, 2013.
  • Referans17 Sutou, Y., Omori, T., Wang, J., Kainuma, R., and Ishida, K., Characteristics of Cu–Al–Mn-based shape memory alloys and their applications, Mater. Sci.Eng., A, 378 (1-2), 278-282, 2004.
  • Referans18 Carvalho, T., Adorno, A., Magdalena, A., and Silva, R., Influence of Ag additions on the activation energy for the reverse eutectoid reaction in Cu–Al alloys, J. Therm. Anal. Calorim., 106 (2), 333-338, 2011.
  • Referans19 Prashantha, S., Mallikarjun, U., and Shashidhara, S., Effect of ageing on shape memory effect and Transformation Temperature on Cu-Al-Be shape memory alloy, Procedia Mater. Sci., 5 567-574, 2014.
  • Referans20 Dagdelen, F., Aldalawi, M., Kok, M., and Qader, I., Influence of Ni addition and heat treatment on phase transformation temperatures and microstructures of a ternary CuAlCr alloy, Eur. Phys. J. Plus, 134 (2), 66, 2019.
  • Referans21 Wang, C., Su, Y., Yang, S., Shi, Z., and Liu, X., A new type of Cu–Al–Ta shape memory alloy with high martensitic transformation temperature, Smart mater. struct., 23 (2), 025018, 2013.
  • Referans22 Silva, R., Paganotti, A., Adorno, A., Santos, C., and Carvalho, T., Characteristics of the Cu–18.84 at.% Al–10.28 at.% Mn–1.57 at.% Ag alloy after slow cooling from high temperatures, J. Therm. Anal. Calorim., 121 (3), 1233-1238, 2015.
  • Referans23 Kök, M., Qader, I.N., Mohammed, S.S., Öner, E., Dağdelen, F., and Aydogdu, Y., Thermal stability and some thermodynamics analysis of heat treated quaternary CuAlNiTa shape memory alloy, Mater. Res. Express, 7 (1), 015702, 2019.
  • Referans24 Qader, I.N., Ercan, E., Faraj, B.A.M., Kok, M., Dagdelen, F., and Aydogdu, Y., The Influence of Time-Dependent Aging Process on the Thermodynamic Parameters and Microstructures of Quaternary Cu 79–Al 12–Ni 4–Nb 5 (wt%) Shape Memory Alloy, Iran. J. Sci. Technol., Trans. Sci., 44 (3), 903-910, 2020.
  • Referans25 Mohammed, S.S., Kok, M., Qader, I.N., Kanca, M.S., Ercan, E., Dağdelen, F., and Aydoğdu, Y., Influence of Ta Additive into Cu 84− x Al 13 Ni 3 (wt%) Shape Memory Alloy Produced by Induction Melting, Iran. J. Sci. Technol., Trans. Sci., 44 (4), 1167-1175, 2020.
  • Referans26 Santos, C., Adorno, A., Stipcich, M., Cuniberti, A., Souza, J., Bessa, C., and Silva, R., Effects of Ag presence on phases separation and order-disorder transitions in Cu-xAl-Mn alloys, Mater. Chem. and Phys., 227 184-190, 2019. Referans27 Soliman, H. and Habib, N., Effect of ageing treatment on hardness of Cu-12.5 wt% Al shape memory alloy, Indian J. Phys., 88 (8), 803-812, 2014.
  • Referans28 Pilz, C., Matsumura, E., Paganotti, A., Cornejo, D., and Silva, R., Microstructure and phase stability of CuAlMnAgZr multicomponent alloys, Mater. Chem. and Phys., 241 122343, 2020.
  • Referans29Adorno, A. and Silva, R., Isothermal decomposition kinetics in the Cu–9% Al–4% Ag alloy, J. Alloys Compd., 375 (1-2), 128-133, 2004.
  • Referans30 Souza, J., Modesto, D., and Silva, R., Thermal behavior of the as-cast Cu–11Al–10Mn alloy with Sn and Gd additions, J. Therm. Anal. Calorim., 138 (5), 3517-3524, 2019.
  • Referans31 Mediha, K., Şahin, A., and YAKINCI, Z.D., CuAl bazlı şekil hatırlamalı alaşımlarda sıcaklığa bağlı oluşan oksitlenme özelliklerinin incelenmesi, Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 20 (2), 157-163, 2018. Referans32 Kök, M. and Yildiz, K., Oxidation parameters determination of Cu–Al–Ni–Fe shape-memory alloy at high temperatures, Appl. Phys. A, 116 (4), 2045-2050, 2014.
  • Referans33 YILDIZ, K., Yüksek-Sıcaklık Cu-Al-Fe-Co Şekil Hatırlamalı Alaşımının İzotermal Oksidasyon Davranışının İncelenmesi, Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 28 (2), 201-206, 2016.
  • Referans34 Silva, R., Machado, E., Adorno, A., Magdalena, A., and Carvalho, T., Completeness of β-phase decomposition reaction in Cu–Al–Ag alloys, J. Therm. Anal. Calorim., 109 (2), 927-931, 2012.
  • Referans35 Gao, S., He, B., Zhou, L., and Hou, J., Effects of Ta on the high temperature oxidation behavior of IN617 alloy in air, Corrosion Science, 170 108682, 2020.
  • Referans36 Callister Jr, W.D. and Rethwisch, D.G., Fundamentals of materials science and engineering: an integrated approach. 2020: John Wiley & Sons. Referans37 Callister, W.D. and Rethwisch, D.G., Materials science and engineering: an introduction. Vol. 7. 2007: John wiley & sons New York.
  • Referans38 Acar, E. and Aydın, M., Şekil hafıza davranışlarının termodinamiği, Politeknik Dergisi, 21 (1), 201-211,2018.
  • Referans39 Callister Jr, W.D. and Rethwisch, D.G., Callister's Mater. Sci. Eng., 2020: John Wiley & Sons.
  • Referans40 Kök, M., Al-Jaf, A.O.A., Çirak, Z.D., Qader, I.N., and Özen, E., Effects of heat treatment temperatures on phase transformation, thermodynamical parameters, crystal microstructure, and electrical resistivity of NiTiV shape memory alloy, J. Therm. Anal. Calorim., 139 (6), 3405-3413, 2020.
  • Referans41 Elrasasi, T., Dobróka, M., Daróczi, L., and Beke, D., Effect of thermal and mechanical cycling on the elastic and dissipative energy in CuAl (11.5 wt%) Ni (5.0 wt%) shape memory alloy, J. Alloys Compd., 577, 517-520, 2013.
  • Referans42 Scherrer, P. and Nachricht, G., Gesell. 2, 98 (1918), Google Scholar A. Patterson, Phys. Rev, 56 978, 1939.

Effects of high temperature applied to CuAlTa alloy in air atmosphere on thermodynamic parameters and microstructure

Yıl 2022, , 1225 - 1236, 28.02.2022
https://doi.org/10.17341/gazimmfd.907419

Öz

The effects of four different oxidation processes on the oxidation behavior, phase components, microstructural properties and thermodynamic parameters of a Cu-9Al-5Ta HTSMA were investigated through DTA / TG, XRD, SEM-EDX and DSC analysis measurements. The oxidation processes were performed at different temperatures, including 700, 800, 900, and 1000°C, and it is found that the surface oxidation reached saturation after 900°C, and thus the oxidation constant did not increase. After oxidation, various phases, such as α(9R), β_1^' (18R), γ_1^' (2H), γ_2 (〖Cu〗_9 〖Al〗_4) and 〖Ta〗_2 〖Al〗_3 phases, were determined that their intensity varied with changing temperature. However, the fact that α(9R) and 〖Ta〗_2 〖Al〗_3 phases, which are rich in the amount of Ta elements, are difficult to diffuse with oxygen caused these phase intensity to be high. It was observed that surface oxide layers formed with increasing temperature caused to grow and expand the martensite and α(9R) phases. Additionally, the change in the steady-state of the α (9R) phase with increasing temperature also caused local changes in the chemical composition. It was observed that these expanding phases forced the oxide layer and formed oxide structures in the form of swelling and splitting on the surface. The DSC analysis showed that the martensite transformation temperature range and thermodynamic parameters do not affect the presence of martensite transformations, although they show small changes with oxidation. However, the elastic energies exhibited irregular behavior due to the heat energy transferred to the alloy. The change in phase structures with increasing oxidation changed the crystallite size.

Proje Numarası

119M300

Kaynakça

  • Referans1 Saud, S.N., Hamzah, E., Bakhsheshi-Rad, H., and Abubakar, T., Effect of Ta additions on the microstructure, damping, and shape memory behaviour of prealloyed Cu-Al-Ni shape memory alloys, Scanning, 2017 2017.
  • Referans2 Aydoğdu, Y., Kürüm, F., Kök, M., Yakinci, Z.D., and Aydoğdu, A., Thermal properties, microstructure and microhardness of Cu–Al–Co shape memory alloy system, Trans. Indian Inst. Met., 67 (4), 595-600, 2014.
  • Referans3 Alaneme, K.K. and Okotete, E.A., Reconciling viability and cost-effective shape memory alloy options–A review of copper and iron based shape memory metallic systems, Eng. Sci. Technol. an Int. J., 19 (3), 1582-1592, 2016.
  • Referans4 Qader, I.N., Kök, M., and Dağdelen, F., Effect of heat treatment on thermodynamics parameters, crystal and microstructure of (Cu-Al-Ni-Hf) shape memory alloy, Physica B, 553 1-5, 2019.
  • Referans5 Wilkes, K.E. and Liaw, P.K., The fatigue behavior of shape-memory alloys, JOM, 52 (10), 45-51, 2000.
  • Referans6 Cederström, J. and Van Humbeeck, J., Relationship between shape memory material properties and applications, Le Journal de Physique IV, 5 (C2), C2-335-C2-341, 1995.
  • Referans7 Silva, R., Paganotti, A., Gama, S., Adorno, A., Carvalho, T., and Santos, C., Investigation of thermal, mechanical and magnetic behaviors of the Cu-11% Al alloy with Ag and Mn additions, Mater. Charact., 75 194-199, 2013.
  • Referans8 Ercan, E., Dagdelen, F., and Qader, I., Effect of tantalum contents on transformation temperatures, thermal behaviors and microstructure of CuAlTa HTSMAs, J. Therm. Anal. Calorim., 139 (1), 29-36, 2020.
  • Referans9 Milhorato, F. and Mazzer, E., Effects of aging on a spray-formed Cu-Al-Ni-Mn-Nb high temperature shape memory alloy, Mater. Sci.Eng., A, 753 232-237, 2019.
  • Referans10Kheirikhah, M.M., Rabiee, S., and Edalat, M.E. A review of shape memory alloy actuators in robotics. in Robot Soccer World Cup. 2010. Springer.
  • Referans11 Derby, S., Sreekumar, M., Nagarajan, T., Singaperumal, M., Zoppi, M., and Molfino, R., Critical review of current trends in shape memory alloy actuators for intelligent robots, Industrial Robot: An International Journal, 2007.
  • Referans12 Furuya, Y. and Shimada, H., Shape memory actuators for robotic applications, Mater. & Des., 12 (1), 21-28, 1991.
  • Referans13 Sımsek, D., Colak, N.Y., Sımsek, I., and Ozyurek, D., Dry Sliding Wear Behaviors of Iron Addition to Nickel–Aluminum Bronze Produced by Mechanical Alloying, Trans. Indian Inst. Met., 73 (2), 319-326, 2020.
  • Referans14 Abdelgnei, M., Omar, M., Ghazali, M., Mohammed, M., and Rashid, B., Dry sliding wear behaviour of thixoformed Al-5.7 Si–2Cu-0.3 Mg alloys at high temperatures using Taguchi method, Wear, 442 203134, 2020. Referans15 Shaik, M.A. and Golla, B.R., Two body abrasion wear behaviour of Cu–ZrB2 composites against SiC emery paper, Wear, 203260, 2020.
  • Referans16 Vajpai, S., Dube, R., and Sangal, S., Application of rapid solidification powder metallurgy processing to prepare Cu–Al–Ni high temperature shape memory alloy strips with high strength and high ductility, Mater. Sci.Eng., A, 570 32-42, 2013.
  • Referans17 Sutou, Y., Omori, T., Wang, J., Kainuma, R., and Ishida, K., Characteristics of Cu–Al–Mn-based shape memory alloys and their applications, Mater. Sci.Eng., A, 378 (1-2), 278-282, 2004.
  • Referans18 Carvalho, T., Adorno, A., Magdalena, A., and Silva, R., Influence of Ag additions on the activation energy for the reverse eutectoid reaction in Cu–Al alloys, J. Therm. Anal. Calorim., 106 (2), 333-338, 2011.
  • Referans19 Prashantha, S., Mallikarjun, U., and Shashidhara, S., Effect of ageing on shape memory effect and Transformation Temperature on Cu-Al-Be shape memory alloy, Procedia Mater. Sci., 5 567-574, 2014.
  • Referans20 Dagdelen, F., Aldalawi, M., Kok, M., and Qader, I., Influence of Ni addition and heat treatment on phase transformation temperatures and microstructures of a ternary CuAlCr alloy, Eur. Phys. J. Plus, 134 (2), 66, 2019.
  • Referans21 Wang, C., Su, Y., Yang, S., Shi, Z., and Liu, X., A new type of Cu–Al–Ta shape memory alloy with high martensitic transformation temperature, Smart mater. struct., 23 (2), 025018, 2013.
  • Referans22 Silva, R., Paganotti, A., Adorno, A., Santos, C., and Carvalho, T., Characteristics of the Cu–18.84 at.% Al–10.28 at.% Mn–1.57 at.% Ag alloy after slow cooling from high temperatures, J. Therm. Anal. Calorim., 121 (3), 1233-1238, 2015.
  • Referans23 Kök, M., Qader, I.N., Mohammed, S.S., Öner, E., Dağdelen, F., and Aydogdu, Y., Thermal stability and some thermodynamics analysis of heat treated quaternary CuAlNiTa shape memory alloy, Mater. Res. Express, 7 (1), 015702, 2019.
  • Referans24 Qader, I.N., Ercan, E., Faraj, B.A.M., Kok, M., Dagdelen, F., and Aydogdu, Y., The Influence of Time-Dependent Aging Process on the Thermodynamic Parameters and Microstructures of Quaternary Cu 79–Al 12–Ni 4–Nb 5 (wt%) Shape Memory Alloy, Iran. J. Sci. Technol., Trans. Sci., 44 (3), 903-910, 2020.
  • Referans25 Mohammed, S.S., Kok, M., Qader, I.N., Kanca, M.S., Ercan, E., Dağdelen, F., and Aydoğdu, Y., Influence of Ta Additive into Cu 84− x Al 13 Ni 3 (wt%) Shape Memory Alloy Produced by Induction Melting, Iran. J. Sci. Technol., Trans. Sci., 44 (4), 1167-1175, 2020.
  • Referans26 Santos, C., Adorno, A., Stipcich, M., Cuniberti, A., Souza, J., Bessa, C., and Silva, R., Effects of Ag presence on phases separation and order-disorder transitions in Cu-xAl-Mn alloys, Mater. Chem. and Phys., 227 184-190, 2019. Referans27 Soliman, H. and Habib, N., Effect of ageing treatment on hardness of Cu-12.5 wt% Al shape memory alloy, Indian J. Phys., 88 (8), 803-812, 2014.
  • Referans28 Pilz, C., Matsumura, E., Paganotti, A., Cornejo, D., and Silva, R., Microstructure and phase stability of CuAlMnAgZr multicomponent alloys, Mater. Chem. and Phys., 241 122343, 2020.
  • Referans29Adorno, A. and Silva, R., Isothermal decomposition kinetics in the Cu–9% Al–4% Ag alloy, J. Alloys Compd., 375 (1-2), 128-133, 2004.
  • Referans30 Souza, J., Modesto, D., and Silva, R., Thermal behavior of the as-cast Cu–11Al–10Mn alloy with Sn and Gd additions, J. Therm. Anal. Calorim., 138 (5), 3517-3524, 2019.
  • Referans31 Mediha, K., Şahin, A., and YAKINCI, Z.D., CuAl bazlı şekil hatırlamalı alaşımlarda sıcaklığa bağlı oluşan oksitlenme özelliklerinin incelenmesi, Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 20 (2), 157-163, 2018. Referans32 Kök, M. and Yildiz, K., Oxidation parameters determination of Cu–Al–Ni–Fe shape-memory alloy at high temperatures, Appl. Phys. A, 116 (4), 2045-2050, 2014.
  • Referans33 YILDIZ, K., Yüksek-Sıcaklık Cu-Al-Fe-Co Şekil Hatırlamalı Alaşımının İzotermal Oksidasyon Davranışının İncelenmesi, Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 28 (2), 201-206, 2016.
  • Referans34 Silva, R., Machado, E., Adorno, A., Magdalena, A., and Carvalho, T., Completeness of β-phase decomposition reaction in Cu–Al–Ag alloys, J. Therm. Anal. Calorim., 109 (2), 927-931, 2012.
  • Referans35 Gao, S., He, B., Zhou, L., and Hou, J., Effects of Ta on the high temperature oxidation behavior of IN617 alloy in air, Corrosion Science, 170 108682, 2020.
  • Referans36 Callister Jr, W.D. and Rethwisch, D.G., Fundamentals of materials science and engineering: an integrated approach. 2020: John Wiley & Sons. Referans37 Callister, W.D. and Rethwisch, D.G., Materials science and engineering: an introduction. Vol. 7. 2007: John wiley & sons New York.
  • Referans38 Acar, E. and Aydın, M., Şekil hafıza davranışlarının termodinamiği, Politeknik Dergisi, 21 (1), 201-211,2018.
  • Referans39 Callister Jr, W.D. and Rethwisch, D.G., Callister's Mater. Sci. Eng., 2020: John Wiley & Sons.
  • Referans40 Kök, M., Al-Jaf, A.O.A., Çirak, Z.D., Qader, I.N., and Özen, E., Effects of heat treatment temperatures on phase transformation, thermodynamical parameters, crystal microstructure, and electrical resistivity of NiTiV shape memory alloy, J. Therm. Anal. Calorim., 139 (6), 3405-3413, 2020.
  • Referans41 Elrasasi, T., Dobróka, M., Daróczi, L., and Beke, D., Effect of thermal and mechanical cycling on the elastic and dissipative energy in CuAl (11.5 wt%) Ni (5.0 wt%) shape memory alloy, J. Alloys Compd., 577, 517-520, 2013.
  • Referans42 Scherrer, P. and Nachricht, G., Gesell. 2, 98 (1918), Google Scholar A. Patterson, Phys. Rev, 56 978, 1939.
Toplam 38 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Ercan Ercan 0000-0002-1583-6068

Fethi Dağdelen 0000-0001-9849-590X

Proje Numarası 119M300
Yayımlanma Tarihi 28 Şubat 2022
Gönderilme Tarihi 31 Mart 2021
Kabul Tarihi 17 Eylül 2021
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

APA Ercan, E., & Dağdelen, F. (2022). CuAlTa alaşımına hava atmosferinde uygulanan yüksek sıcaklığın termodinamik parametrelerine ve mikro yapısına etkileri. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 37(3), 1225-1236. https://doi.org/10.17341/gazimmfd.907419
AMA Ercan E, Dağdelen F. CuAlTa alaşımına hava atmosferinde uygulanan yüksek sıcaklığın termodinamik parametrelerine ve mikro yapısına etkileri. GUMMFD. Şubat 2022;37(3):1225-1236. doi:10.17341/gazimmfd.907419
Chicago Ercan, Ercan, ve Fethi Dağdelen. “CuAlTa alaşımına Hava Atmosferinde Uygulanan yüksek sıcaklığın Termodinamik Parametrelerine Ve Mikro yapısına Etkileri”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 37, sy. 3 (Şubat 2022): 1225-36. https://doi.org/10.17341/gazimmfd.907419.
EndNote Ercan E, Dağdelen F (01 Şubat 2022) CuAlTa alaşımına hava atmosferinde uygulanan yüksek sıcaklığın termodinamik parametrelerine ve mikro yapısına etkileri. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 37 3 1225–1236.
IEEE E. Ercan ve F. Dağdelen, “CuAlTa alaşımına hava atmosferinde uygulanan yüksek sıcaklığın termodinamik parametrelerine ve mikro yapısına etkileri”, GUMMFD, c. 37, sy. 3, ss. 1225–1236, 2022, doi: 10.17341/gazimmfd.907419.
ISNAD Ercan, Ercan - Dağdelen, Fethi. “CuAlTa alaşımına Hava Atmosferinde Uygulanan yüksek sıcaklığın Termodinamik Parametrelerine Ve Mikro yapısına Etkileri”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 37/3 (Şubat 2022), 1225-1236. https://doi.org/10.17341/gazimmfd.907419.
JAMA Ercan E, Dağdelen F. CuAlTa alaşımına hava atmosferinde uygulanan yüksek sıcaklığın termodinamik parametrelerine ve mikro yapısına etkileri. GUMMFD. 2022;37:1225–1236.
MLA Ercan, Ercan ve Fethi Dağdelen. “CuAlTa alaşımına Hava Atmosferinde Uygulanan yüksek sıcaklığın Termodinamik Parametrelerine Ve Mikro yapısına Etkileri”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, c. 37, sy. 3, 2022, ss. 1225-36, doi:10.17341/gazimmfd.907419.
Vancouver Ercan E, Dağdelen F. CuAlTa alaşımına hava atmosferinde uygulanan yüksek sıcaklığın termodinamik parametrelerine ve mikro yapısına etkileri. GUMMFD. 2022;37(3):1225-36.