Araştırma Makalesi
BibTex RIS Kaynak Göster

Toz metal Al2O3 takviyeli Mg5Sn matrisli kompozitler: Üretim ve karakterizasyon

Yıl 2023, , 1003 - 1012, 07.10.2022
https://doi.org/10.17341/gazimmfd.947051

Öz

Bu çalışmada, ağırlıkça %5 Sn içeren Mg-Sn matris içerisine farklı oranlarda Al2O3 ilave edilerek toz metalurjisi (TM) yöntemiyle Mg5Sn-xAl2O3 kompozit malzemeler üretilmiştir. Üretimde Mg tozlarının sahip olduğu yüksek reaktivitenin yol açacağı olumsuzlukları önlemek amacıyla yeni bir karıştırma tekniği kullanılmıştır. Hazırlanan toz karışımlarından numune üretimi sıcak presleme tekniği ile gerçekleştirilmiştir. Üretilen numuneler, yoğunluk ölçümleri, mikroyapı incelemeleri ve mekanik testler ile karakterize edilmiştir. Ölçülen yoğunluk değerleri teorik yoğunluğa oldukça yakın elde edilmiştir. Mikroyapı incelemeleri, alümina takviyesinin mikroyapıda homojen bir şekilde dağıldığını göstermiştir. Artan Al2O3 takviye oranı, sertlik ve çekme dayanımı değerlerinde önemli artışlar sağlamıştır.

Destekleyen Kurum

Bingöl Üniversitesi

Proje Numarası

BAP-MMF.2017.00.007

Teşekkür

Bu çalışmaya, BAP-MMF.2017.00.007 nolu proje ile sağladığı destekten dolayı Bingöl Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi’ne teşekkür ederiz.

Kaynakça

  • 1. Kulekci M.K., Magnesium and its alloys applications in automotive industry, Int. J. Adv. Manuf. Technol., 39, 851–865, 2008.
  • 2. Kumar D., Phanden R.K., Thakur L., A review on environment friendly and lightweight Magnesium-Based metal matrix composites and alloys, Mater. Today Proc., 38, 359–364, 2021.
  • 3. Çetin T., Akkaş M., Boz M., Gaz atomizasyonu yöntemi ile üretilen AM60 magnezyum alaşım tozunun toz karakterizasyonu üzerine gaz basıncının etkisinin araştırılması, J. Fac. Eng. Archit. Gazi Univ., 35, 967–977, 2020.
  • 4. Yin S., Duan W., Liu W., et al., Influence of specific second phases on corrosion behaviors of Mg-Zn-Gd-Zr alloys, Corros. Sci., 166, 108419, 2020.
  • 5. Hekimoğlu A.P., Çalış M., Titanyum ile tane inceltmenin Al-25Zn alaşımının mikroyapı, mekanik ve korozyon özelliklerine etkisinin incelenmesi, J. Fac. Eng. Archit. Gazi Univ., 35, 311–322, 2020.
  • 6. Erçetin A., Mg-Sn-Zr magnezyum alaşımlarının sıcak pres yöntemiyle üretimi, Avrupa Bilim ve Teknol. Derg., (23), 649–655, 2021.
  • 7. Ramalingam V.V., Ramasamy P., Kovukkal M., Das, Myilsamy G., Research and development in magnesium alloys for industrial and biomedical applications: A review, Metals and Materials International, 26, 409–430, 2020.
  • 8. Saravanan R.A., Surappa M.K., Fabrication and characterisation of pure magnesium-30 vol.% SiCp particle composite, Mater. Sci. Eng. A., 276, 108–116, 2000.
  • 9. Suresh S., Gowd G.H., Kumar M.L.S.D., Mechanical and wear behavior of Al 7075/Al2O3/SiC/mg metal matrix nanocomposite by liquid state process, Adv. Compos. Hybrid Mater., 2, 530–539, 2019. 10. Kandemir S., Development of graphene nanoplatelet-reinforced AZ91 magnesium alloy by solidification processing, J. Mater. Eng. Perform., 27, 3014–3023, 2018.
  • 11. Ye H.Z., Liu X.Y., Review of recent studies in magnesium matrix composites, J. Mater. Sci., 39, 6153–6171, 2004.
  • 12. Patel M., Pardhi B., Chopara S., Pal M., Lightweight composite materials for automotive-A review, Int. Res. J. Eng. Technol., 5, 41–47, 2018.
  • 13. Luo A., Renaud J., Nakatsugawa I., Plourde J., Magnesium castings for automotive applications, JOM., 47, 28–31, 1995.
  • 14. Zhao Z., Bai P., Du W., et al., An overview of graphene and its derivatives reinforced metal matrix composites: Preparation, properties and applications, Carbon, 170, 302–326, 2020.
  • 15. Özgün Ö., Erçetin A., Microstructural and mechanical properties of Cr-C reinforced Cu matrix composites produced through powder metallurgy method, Turkish J. Nat. Sci., 6, 1–6, 2017.
  • 16. Gökçe A., Toz metalurjisi yöntemiyle Mg-Sn alaşımı üretimi ve karakterizasyonu, Acad. Platf. J. Eng. Sci., 8, 112–119, 2020.
  • 17. Bendikiene R., Ciuplys A., Kavaliauskiene L., Circular economy practice: From industrial metal waste to production of high wear resistant coatings, J. Clean. Prod., 229, 1225–1232, 2019.
  • 18. Erden M.A., Yaşar N., Korkmaz M.E., Ayvacı B., Nimel Sworna Ross K., Mia M., Investigation of microstructure, mechanical and machinability properties of Mo-added steel produced by powder metallurgy method, Int. J. Adv. Manuf. Technol., 1–17, 2021.
  • 19. Ercetin A., Özgün Ö., Aslantas K., Investigation of mechanical properties of Mg5Sn-xZn alloys produced through new method in powder metallurgy, J. Test. Eval., 49, 2021.
  • 20. Shuai C., Zhou Y., Lin X., et al., Preparation and characterization of laser-melted Mg–Sn–Zn alloys for biomedical application, J. Mater. Sci. Mater. Med., 28, 13, 2017.
  • 21. Zong Y., Yuan G., Zhang X., Mao L., Niu J., Ding W., Comparison of biodegradable behaviors of AZ31 and Mg-Nd-Zn-Zr alloys in Hank’s physiological solution, Mater. Sci. Eng. B Solid-State Mater. Adv. Technol., 177, 395–401, 2012.
  • 22. Wahba M., Katayama S., Laser welding of AZ31B magnesium alloy to Zn-coated steel, Mater. Des., 35, 701–706, 2012.
  • 23. Nayyeri G., Mahmudi R., Enhanced creep properties of a cast Mg-5Sn alloy subjected to aging-treatment, Mater. Sci. Eng. A., 527, 4613–4618, 2010.
  • 24. Özgün Ö., Aslantaş K., Erçetin A., Powder metallurgy Mg-Sn alloys: Production and characterization, Sci. Iran., 27, 1255–1265, 2020.
  • 25. Uddin S.M., Mahmud T., Wolf C., et al., Effect of size and shape of metal particles to improve hardness and electrical properties of carbon nanotube reinforced copper and copper alloy composites, Compos. Sci. Technol., 70, 2253–2257, 2010.
  • 26. Balalan Z., Ozgun O., Effect of production route on the microstructure and mechanical properties of Cu–SiCp composites, Arab. J. Sci. Eng., 43, 4889–4897, 2018.
  • 27. Özgün Ö., Bulut C., A novel mixing method for powder metallurgy copper-carbon nanotube composites, Mater. Sci. Eng. Technol., 51, 982–991, 2020.
  • 28. Erçetin A., Aslantaş K., Perçin M., Micro milling of tungsten-copper composite materials produced through powder metallurgy method: Effect of composition and sintering temperature, J. Fac. Eng. Archit. Gazi Univ., 33, 1369–1381, 2018.
  • 29. Zhan Y., Zhang G., The effect of interfacial modifying on the mechanical and wear properties of SiCp/Cu composites, Mater. Lett., 57, 4583–4591, 2003.
  • 30. Cheng W.L., Park S.S., You B.S., Koo B.H., Microstructure and mechanical properties of binary Mg-Sn alloys subjected to indirect extrusion, Mater. Sci. Eng. A., 527, 4650–4653, 2010.
  • 31. Liu H., Chen Y., Tang Y., Wei S., Niu G., The microstructure, tensile properties, and creep behavior of as-cast Mg-(1-10)%Sn alloys, J. Alloys Compd., 440, 122–126, 2007.
  • 32. Gülsoy H.Ö., Özgün Ö., Bilketay S., Powder injection molding of Stellite 6 powder: Sintering, microstructural and mechanical properties, Mater. Sci. Eng. A., 651, 914–924, 2016.
  • 33. Özgün Ö., Gülsoy H.Ö., Yilmaz R., Findik F., Injection molding of nickel based 625 superalloy: Sintering, heat treatment, microstructure and mechanical properties, J. Alloys Compd., 546, 192–207, 2013.
  • 34. Chen D., Ren Y.P., Guo Y., Pei W.L., Zhao H.Da, Qln G.W., Microstructures and tensile properties of as-extruded Mg-Sn binary alloys, Trans. Nonferrous Met. Soc. China, 20, 1321–1325, 2010.
  • 35. Hort N., Huang Y., Leil T.A., Maier P., Kainer K.U., Microstructural investigations of the Mg-Sn-xCa system, Adv. Eng. Mater., 8, 359–364, 2006.
  • 36. Nguyen Q.B., Gupta M., Microstructure and mechanical characteristics of AZ31B/Al2O 3 nanocomposite with addition of Ca, J. Compos. Mater., 43, 5–17, 2009.
  • 37. Radi Y., Mahmudi R., Effect of Al2O3 nano-particles on the microstructural stability of AZ31 Mg alloy after equal channel angular pressing, Mater. Sci. Eng. A., 527, 2764–2771, 2010.
  • 38. Turan M.E., Sun Y., Akgul Y., Turen Y., Ahlatci H., The effect of GNPs on wear and corrosion behaviors of pure magnesium, J. Alloys Compd., 724, 14–23, 2017.
  • 39. Vahid A., Hodgson P., Li Y., Reinforced magnesium composites by metallic particles for biomedical applications, Mater. Sci. Eng. A., 685, 349–357, 2017.
  • 40. Jiang Q.C., Wang H.Y., Ma B.X., Wang Y., Zhao F., Fabrication of B4C participate reinforced magnesium matrix composite by powder metallurgy, J. Alloys Compd., 386, 177–181, 2005.
  • 41. Paramsothy M., Tan X.H., Chan J., Kwok R., Gupta M., Al2O3 nanoparticle addition to concentrated magnesium alloy AZ81: Enhanced ductility, J. Alloys Compd., 545, 12–18, 2012.
  • 42. Jiang Q.C., Li X.L., Wang H.Y., Fabrication of TiC particulate reinforced magnesium matrix composites, Scr. Mater., 48, 713–717, 2003.

Powder metal Al2O3 reinforced Mg5Sn matrix composites: Production and characterization

Yıl 2023, , 1003 - 1012, 07.10.2022
https://doi.org/10.17341/gazimmfd.947051

Öz

In this study, Mg5Sn-xAl2O3 composite materials were produced by powder metallurgy (PM) method by adding different proportions of Al2O3 into the Mg-Sn matrix containing 5% Sn by weight. A new mixing technique was used to prevent the negative effects of the high reactivity of Mg powders in production. The production of samples from the prepared powder mixtures was carried out by hot pressing technique. The produced samples were characterized by density measurements, microstructure examinations and mechanical tests. Measured density values are obtained very close to the theoretical density. Microstructure investigations showed that the alumina reinforcement was homogeneously distributed in the microstructure. Increasing Al2O3 reinforcement ratio provided significant increases in hardness and tensile strength values.

Proje Numarası

BAP-MMF.2017.00.007

Kaynakça

  • 1. Kulekci M.K., Magnesium and its alloys applications in automotive industry, Int. J. Adv. Manuf. Technol., 39, 851–865, 2008.
  • 2. Kumar D., Phanden R.K., Thakur L., A review on environment friendly and lightweight Magnesium-Based metal matrix composites and alloys, Mater. Today Proc., 38, 359–364, 2021.
  • 3. Çetin T., Akkaş M., Boz M., Gaz atomizasyonu yöntemi ile üretilen AM60 magnezyum alaşım tozunun toz karakterizasyonu üzerine gaz basıncının etkisinin araştırılması, J. Fac. Eng. Archit. Gazi Univ., 35, 967–977, 2020.
  • 4. Yin S., Duan W., Liu W., et al., Influence of specific second phases on corrosion behaviors of Mg-Zn-Gd-Zr alloys, Corros. Sci., 166, 108419, 2020.
  • 5. Hekimoğlu A.P., Çalış M., Titanyum ile tane inceltmenin Al-25Zn alaşımının mikroyapı, mekanik ve korozyon özelliklerine etkisinin incelenmesi, J. Fac. Eng. Archit. Gazi Univ., 35, 311–322, 2020.
  • 6. Erçetin A., Mg-Sn-Zr magnezyum alaşımlarının sıcak pres yöntemiyle üretimi, Avrupa Bilim ve Teknol. Derg., (23), 649–655, 2021.
  • 7. Ramalingam V.V., Ramasamy P., Kovukkal M., Das, Myilsamy G., Research and development in magnesium alloys for industrial and biomedical applications: A review, Metals and Materials International, 26, 409–430, 2020.
  • 8. Saravanan R.A., Surappa M.K., Fabrication and characterisation of pure magnesium-30 vol.% SiCp particle composite, Mater. Sci. Eng. A., 276, 108–116, 2000.
  • 9. Suresh S., Gowd G.H., Kumar M.L.S.D., Mechanical and wear behavior of Al 7075/Al2O3/SiC/mg metal matrix nanocomposite by liquid state process, Adv. Compos. Hybrid Mater., 2, 530–539, 2019. 10. Kandemir S., Development of graphene nanoplatelet-reinforced AZ91 magnesium alloy by solidification processing, J. Mater. Eng. Perform., 27, 3014–3023, 2018.
  • 11. Ye H.Z., Liu X.Y., Review of recent studies in magnesium matrix composites, J. Mater. Sci., 39, 6153–6171, 2004.
  • 12. Patel M., Pardhi B., Chopara S., Pal M., Lightweight composite materials for automotive-A review, Int. Res. J. Eng. Technol., 5, 41–47, 2018.
  • 13. Luo A., Renaud J., Nakatsugawa I., Plourde J., Magnesium castings for automotive applications, JOM., 47, 28–31, 1995.
  • 14. Zhao Z., Bai P., Du W., et al., An overview of graphene and its derivatives reinforced metal matrix composites: Preparation, properties and applications, Carbon, 170, 302–326, 2020.
  • 15. Özgün Ö., Erçetin A., Microstructural and mechanical properties of Cr-C reinforced Cu matrix composites produced through powder metallurgy method, Turkish J. Nat. Sci., 6, 1–6, 2017.
  • 16. Gökçe A., Toz metalurjisi yöntemiyle Mg-Sn alaşımı üretimi ve karakterizasyonu, Acad. Platf. J. Eng. Sci., 8, 112–119, 2020.
  • 17. Bendikiene R., Ciuplys A., Kavaliauskiene L., Circular economy practice: From industrial metal waste to production of high wear resistant coatings, J. Clean. Prod., 229, 1225–1232, 2019.
  • 18. Erden M.A., Yaşar N., Korkmaz M.E., Ayvacı B., Nimel Sworna Ross K., Mia M., Investigation of microstructure, mechanical and machinability properties of Mo-added steel produced by powder metallurgy method, Int. J. Adv. Manuf. Technol., 1–17, 2021.
  • 19. Ercetin A., Özgün Ö., Aslantas K., Investigation of mechanical properties of Mg5Sn-xZn alloys produced through new method in powder metallurgy, J. Test. Eval., 49, 2021.
  • 20. Shuai C., Zhou Y., Lin X., et al., Preparation and characterization of laser-melted Mg–Sn–Zn alloys for biomedical application, J. Mater. Sci. Mater. Med., 28, 13, 2017.
  • 21. Zong Y., Yuan G., Zhang X., Mao L., Niu J., Ding W., Comparison of biodegradable behaviors of AZ31 and Mg-Nd-Zn-Zr alloys in Hank’s physiological solution, Mater. Sci. Eng. B Solid-State Mater. Adv. Technol., 177, 395–401, 2012.
  • 22. Wahba M., Katayama S., Laser welding of AZ31B magnesium alloy to Zn-coated steel, Mater. Des., 35, 701–706, 2012.
  • 23. Nayyeri G., Mahmudi R., Enhanced creep properties of a cast Mg-5Sn alloy subjected to aging-treatment, Mater. Sci. Eng. A., 527, 4613–4618, 2010.
  • 24. Özgün Ö., Aslantaş K., Erçetin A., Powder metallurgy Mg-Sn alloys: Production and characterization, Sci. Iran., 27, 1255–1265, 2020.
  • 25. Uddin S.M., Mahmud T., Wolf C., et al., Effect of size and shape of metal particles to improve hardness and electrical properties of carbon nanotube reinforced copper and copper alloy composites, Compos. Sci. Technol., 70, 2253–2257, 2010.
  • 26. Balalan Z., Ozgun O., Effect of production route on the microstructure and mechanical properties of Cu–SiCp composites, Arab. J. Sci. Eng., 43, 4889–4897, 2018.
  • 27. Özgün Ö., Bulut C., A novel mixing method for powder metallurgy copper-carbon nanotube composites, Mater. Sci. Eng. Technol., 51, 982–991, 2020.
  • 28. Erçetin A., Aslantaş K., Perçin M., Micro milling of tungsten-copper composite materials produced through powder metallurgy method: Effect of composition and sintering temperature, J. Fac. Eng. Archit. Gazi Univ., 33, 1369–1381, 2018.
  • 29. Zhan Y., Zhang G., The effect of interfacial modifying on the mechanical and wear properties of SiCp/Cu composites, Mater. Lett., 57, 4583–4591, 2003.
  • 30. Cheng W.L., Park S.S., You B.S., Koo B.H., Microstructure and mechanical properties of binary Mg-Sn alloys subjected to indirect extrusion, Mater. Sci. Eng. A., 527, 4650–4653, 2010.
  • 31. Liu H., Chen Y., Tang Y., Wei S., Niu G., The microstructure, tensile properties, and creep behavior of as-cast Mg-(1-10)%Sn alloys, J. Alloys Compd., 440, 122–126, 2007.
  • 32. Gülsoy H.Ö., Özgün Ö., Bilketay S., Powder injection molding of Stellite 6 powder: Sintering, microstructural and mechanical properties, Mater. Sci. Eng. A., 651, 914–924, 2016.
  • 33. Özgün Ö., Gülsoy H.Ö., Yilmaz R., Findik F., Injection molding of nickel based 625 superalloy: Sintering, heat treatment, microstructure and mechanical properties, J. Alloys Compd., 546, 192–207, 2013.
  • 34. Chen D., Ren Y.P., Guo Y., Pei W.L., Zhao H.Da, Qln G.W., Microstructures and tensile properties of as-extruded Mg-Sn binary alloys, Trans. Nonferrous Met. Soc. China, 20, 1321–1325, 2010.
  • 35. Hort N., Huang Y., Leil T.A., Maier P., Kainer K.U., Microstructural investigations of the Mg-Sn-xCa system, Adv. Eng. Mater., 8, 359–364, 2006.
  • 36. Nguyen Q.B., Gupta M., Microstructure and mechanical characteristics of AZ31B/Al2O 3 nanocomposite with addition of Ca, J. Compos. Mater., 43, 5–17, 2009.
  • 37. Radi Y., Mahmudi R., Effect of Al2O3 nano-particles on the microstructural stability of AZ31 Mg alloy after equal channel angular pressing, Mater. Sci. Eng. A., 527, 2764–2771, 2010.
  • 38. Turan M.E., Sun Y., Akgul Y., Turen Y., Ahlatci H., The effect of GNPs on wear and corrosion behaviors of pure magnesium, J. Alloys Compd., 724, 14–23, 2017.
  • 39. Vahid A., Hodgson P., Li Y., Reinforced magnesium composites by metallic particles for biomedical applications, Mater. Sci. Eng. A., 685, 349–357, 2017.
  • 40. Jiang Q.C., Wang H.Y., Ma B.X., Wang Y., Zhao F., Fabrication of B4C participate reinforced magnesium matrix composite by powder metallurgy, J. Alloys Compd., 386, 177–181, 2005.
  • 41. Paramsothy M., Tan X.H., Chan J., Kwok R., Gupta M., Al2O3 nanoparticle addition to concentrated magnesium alloy AZ81: Enhanced ductility, J. Alloys Compd., 545, 12–18, 2012.
  • 42. Jiang Q.C., Li X.L., Wang H.Y., Fabrication of TiC particulate reinforced magnesium matrix composites, Scr. Mater., 48, 713–717, 2003.
Toplam 41 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Ali Erçetin 0000-0002-7631-1361

Özgür Özgün 0000-0003-3816-6746

Kubilay Aslantaş 0000-0003-4558-4516

Proje Numarası BAP-MMF.2017.00.007
Yayımlanma Tarihi 7 Ekim 2022
Gönderilme Tarihi 2 Haziran 2021
Kabul Tarihi 1 Mayıs 2022
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

APA Erçetin, A., Özgün, Ö., & Aslantaş, K. (2022). Toz metal Al2O3 takviyeli Mg5Sn matrisli kompozitler: Üretim ve karakterizasyon. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 38(2), 1003-1012. https://doi.org/10.17341/gazimmfd.947051
AMA Erçetin A, Özgün Ö, Aslantaş K. Toz metal Al2O3 takviyeli Mg5Sn matrisli kompozitler: Üretim ve karakterizasyon. GUMMFD. Ekim 2022;38(2):1003-1012. doi:10.17341/gazimmfd.947051
Chicago Erçetin, Ali, Özgür Özgün, ve Kubilay Aslantaş. “Toz Metal Al2O3 Takviyeli Mg5Sn Matrisli Kompozitler: Üretim Ve Karakterizasyon”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 38, sy. 2 (Ekim 2022): 1003-12. https://doi.org/10.17341/gazimmfd.947051.
EndNote Erçetin A, Özgün Ö, Aslantaş K (01 Ekim 2022) Toz metal Al2O3 takviyeli Mg5Sn matrisli kompozitler: Üretim ve karakterizasyon. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 38 2 1003–1012.
IEEE A. Erçetin, Ö. Özgün, ve K. Aslantaş, “Toz metal Al2O3 takviyeli Mg5Sn matrisli kompozitler: Üretim ve karakterizasyon”, GUMMFD, c. 38, sy. 2, ss. 1003–1012, 2022, doi: 10.17341/gazimmfd.947051.
ISNAD Erçetin, Ali vd. “Toz Metal Al2O3 Takviyeli Mg5Sn Matrisli Kompozitler: Üretim Ve Karakterizasyon”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 38/2 (Ekim 2022), 1003-1012. https://doi.org/10.17341/gazimmfd.947051.
JAMA Erçetin A, Özgün Ö, Aslantaş K. Toz metal Al2O3 takviyeli Mg5Sn matrisli kompozitler: Üretim ve karakterizasyon. GUMMFD. 2022;38:1003–1012.
MLA Erçetin, Ali vd. “Toz Metal Al2O3 Takviyeli Mg5Sn Matrisli Kompozitler: Üretim Ve Karakterizasyon”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, c. 38, sy. 2, 2022, ss. 1003-12, doi:10.17341/gazimmfd.947051.
Vancouver Erçetin A, Özgün Ö, Aslantaş K. Toz metal Al2O3 takviyeli Mg5Sn matrisli kompozitler: Üretim ve karakterizasyon. GUMMFD. 2022;38(2):1003-12.