Araştırma Makalesi
BibTex RIS Kaynak Göster

Lead, Nickel, and Copper removal by chemical precipitation using calcined Black Sea mussel shells

Yıl 2023, , 743 - 752, 07.10.2022
https://doi.org/10.17341/gazimmfd.995896

Öz

In this study, removal of heavy metals from wastewaters by chemical precipitation using calcined Black Sea mussel shells was investigated. The mussel shell used was primarily powdered and then calcined mussel shell powder was obtained by applying calcination pretreatment, and this material was used in removal studies of lead, nickel, and copper heavy metals. The chemical precipitation performance of conventional calcium hydroxide and sodium hydroxide chemicals was also examined to make a comparison in the studies. The most suitable treatment conditions were determined by conducting dosage and initial heavy metal concentration experiments for all precipitating agents. As a result of experiments, high treatment efficiencies such as 98.79, 99.67 and 99.37% were achieved in treatment of lead, nickel, and copper heavy metals by calcined mussel shell powder, respectively. It has been determined that effective heavy metal removal can be achieved at close dosages of calcined mussel shell powder and other chemicals. Mussel shell caused to obtain lower final pH values despite providing these higher efficiencies. When all these factors are considered together, it has been exhibited that calcined mussel shell powder can be an alternative to other precipitating agents because it is a natural material and abundant in nature.

Kaynakça

  • Amen R., Yaseen M., Mukhtar A., Klemeš J.J., Saqib S., Ullah S., Al-Sehemi A.G., Rafiq S., Babar M., Fatt C.L., Ibrahim M., Asif S., Qureshi K.S., Akbar M.M., Bokhari A., Lead and cadmium removal from wastewater using eco-friendly biochar adsorbent derived from rice husk, wheat straw, and corncob, Clean. Eng. Technol., 1, 100006, 2020.
  • Moersidik S.S., Nugroho R., Handayani M., Kamilawati, Pratama M.A., Optimization and reaction kinetics on the removal of Nickel and COD from wastewater from electroplating industry using Electrocoagulation and Advanced Oxidation Processes, Heliyon, 6, e03319, 2020.
  • Zeng Z., Zheng P., Da K., Li Y., Li W., Dongdong X., Chen W., Pan C., The removal of copper and zinc from swine wastewater by anaerobic biological-chemical process: Performance and mechanism, J. Hazard. Mater., 401, 123767, 2021.
  • Adigun O.A., Oninla V.O., Babarinde N.A.A., Oyedotun K.O., Manyala N., Characterization of sugarcane leaf-biomass and investigation of its efficiency in removing Nickel(II), Chromium(III) and Cobalt(II) ions from polluted water, Surfaces and Interfaces, 20, 100621, 2020.
  • Zhang P., Ouyang S., Li P., Sun Z., Ding N., Huang Y., Ultrahigh removal performance of lead from wastewater by tricalcium aluminate via precipitation combining flocculation with amorphous aluminum, J. Clean. Prod. 246, 118728, 2020.
  • Yan Y., Liang X., Ma J., Shen J., Rapid removal of copper from wastewater by Fe-based amorphous alloy, Intermetallics, 124, 106849, 2020.
  • Kumar M., Nandi M., Pakshirajan K., Recent advances in heavy metal recovery from wastewater by biogenic sulfide precipitation, J. Environ. Manage., 278, 111555, 2021.
  • Carolin C.F., Kumar P.S., Saravanan A., Joshiba G.J., Naushad M., Efficient techniques for the removal of toxic heavy metals from aquatic environment: A review, J. Environ. Chem. Eng., 5, 2782–2799, 2017.
  • Bratskaya S.Y., Pestov A.V., Yatluk Y.G., Avramenko V.A., Heavy metals removal by flocculation/ precipitation using N-(2-carboxyethyl)chitosans, Colloids Surfaces A Physicochem. Eng. Asp., 339, 140–144, 2009.
  • Li X., Zhang Q., Yang B., Co-precipitation with CaCO3 to remove heavy metals and significantly reduce the moisture content of filter residue, Chemosphere, 239, 124660, 2020.
  • Zewail T.M., Yousef N.S., Kinetic study of heavy metal ions removal by ion exchange in batch conical air spouted bed, Alexandria Eng. J., 54, 83–90, 2015.
  • Šoštarić T.D., Petrović M.S., Pastor F.T., Lončarević D.R., Petrović J.T., Milojković J. V., Stojanović M.D., Study of heavy metals biosorption on native and alkali-treated apricot shells and its application in wastewater treatment, J. Mol. Liq., 259, 340–349, 2018.
  • Castro-Muñoz R., González-Melgoza L.L., García-Depraect O., Ongoing progress on novel nanocomposite membranes for the separation of heavy metals from contaminated water, Chemosphere, 270, 129421, 2021.
  • Brudey T., Largitte L., Jean-Marius C., Tant T., Dumesnil P.C., Lodewyckx P., Adsorption of lead by chemically activated carbons from three lignocellulosic precursors, J. Anal. Appl. Pyrolysis, 120, 450–463, 2016.
  • Tran T.-K., Chiu K.-F., Lin C.-Y., Leu H.-J., Electrochemical treatment of wastewater: Selectivity of the heavy metals removal process, Int. J. Hydrogen Energy, 42, 27741–27748, 2017.
  • Hunsom M., Pruksathorn K., Damronglerd S., Vergnes H., Duverneuil P., Electrochemical treatment of heavy metals (Cu2+, Cr6+, Ni2+) from industrial effluent and modeling of copper reduction, Water Res., 39, 610–616, 2005.
  • Gürel L., Applications of the biosorption process for nickel removal from aqueous solutions - a review, Chem. Eng. Commun., 204, 711–722, 2017.
  • Chen Q., Yao Y., Li X., Lu J., Zhou J., Huang Z., Comparison of heavy metal removals from aqueous solutions by chemical precipitation and characteristics of precipitates, J. Water Process Eng., 26, 289–300, 2018.
  • Baltpurvins K.A., Burns R.C., Lawrance G.A., Heavy metals in wastewater: Modelling the hydroxide precipitation of copper(II) from wastewater using lime as the precipitant, Waste Manag., 16, 717–725, 1996.
  • Zhang X., Tian J., Hu Y., Han H., Luo X., Sun W., Yue T., Wang L., Cao X., Zhou H., Selective sulfide precipitation of copper ions from arsenic wastewater using monoclinic pyrrhotite, Sci. Total Environ., 705, 135816, 2020.
  • El Haddad M., Regti A., Laamari M.R., Slimani R., Mamouni R., El Antri S., Lazar S., Calcined mussel shells as a new and eco-friendly biosorbent to remove textile dyes from aqueous solutions, J. Taiwan Inst. Chem. Eng., 45, 533–540, 2014.
  • Liu Y., Sun C., Xu J., Li Y., The use of raw and acid-pretreated bivalve mollusk shells to remove metals from aqueous solutions, J. Hazard. Mater., 168, 156–162, 2009.
  • Peña-Rodríguez S., Fernández-Calviño D., Nóvoa-Muñoz J.C., Arias-Estévez M., Núñez-Delgado A., Fernández-Sanjurjo M.J., Álvarez-Rodríguez E., Kinetics of Hg(II) adsorption and desorption in calcined mussel shells, J. Hazard. Mater., 180, 622–627, 2010.
  • Gürel L., Güneş S., Determination of heavy metal removal potential of the Samsun Coast mussel shells, Pamukkale University Journal of Engineering Sciences, 24, 1135–1140, 2018.
  • El Haddad M., Removal of Basic Fuchsin dye from water using mussel shell biomass waste as an adsorbent: Equilibrium, kinetics, and thermodynamics, J. Taibah Univ. Sci., 10, 664-674, 2016.
  • T.C. Çevre ve Orman Bakanlığı. Su kirliliği kontrolü yönetmeliği. https://www.mevzuat.gov.tr/mevzuat? MevzuatNo=7221&MevzuatTur=7&MevzuatTertip=5. Yayın tarihi Aralık 31, 2004. Erişim tarihi Şubat 1, 2022.
  • Öztürk İ., Timur H., Koşkan U., Atıksu Arıtımının Esasları, T.C. Çevre ve Orman Bakanlığı, Ankara, Türkiye, 2005.
  • Tünay O., Çevre Mühendisliğinde Kimyasal Prosesler, İTÜ, İstanbul, Türkiye, 1996.
  • Macchi G., Pagano M., Santori M., Tiravanti G., Battery industry wastewater: Pb removal and produced sludge, Water Res., 27, 1511–1518, 1993.
  • Tsai T.H., Chou H.W., Wu Y.F., Removal of nickel from chemical plating waste solution through precipitation and production of microsized nickel hydroxide particles, Sep. Purif. Technol., 251, 117315, 2020.
  • Yürekli Y., Determination of adsorption capacities of NaX Nano-particles against heavy metals and dyestuff, Journal of the Faculty of Engineering and Architecture of Gazi University, 34 (4), 2113-2124, 2019.
  • Öden M.K., Investigation of the success of physical and chemically modified process waste in heavy metal removal from synthetic wastewater, Journal of the Faculty of Engineering and Architecture of Gazi University 35 (1), 39-49, 2020.
  • Habte L., Shiferaw N., Thriveni T., Mulatu D., Lee M., Jung S., Ahn J.W., Removal of Cd(II) and Pb(II) from wastewater via carbonation of aqueous Ca(OH)2 derived from eggshell, Process Saf. Environ. Prot., 141, 278-287, 2020.

Kalsine Karadeniz midye kabukları kullanılarak kimyasal çöktürmeyle Kurşun, Nikel ve Bakır giderimi

Yıl 2023, , 743 - 752, 07.10.2022
https://doi.org/10.17341/gazimmfd.995896

Öz

Bu çalışmada, kalsine Karadeniz midye kabukları kullanılarak kimyasal çöktürmeyle atıksulardan ağır metallerin giderimi araştırılmıştır. Kullanılan midye kabuğu öncelikle toz haline getirilmiş daha sonra kalsinasyon ön işlemi uygulanarak kalsine midye kabuğu tozu elde edilmiş ve bu madde kurşun, nikel ve bakır ağır metallerinin giderimi çalışmalarında kullanılmıştır. Çalışmalarda ayrıca karşılaştırma amacıyla geleneksel kalsiyum hidroksit ve sodyum hidroksit kimyasallarının kimyasal çöktürme performansı da incelenmiştir. Tüm çöktürücü ajanlar için dozaj deneyleri ve başlangıç ağır metal konsantrasyonu deneyleri gerçekleştirilerek, en uygun arıtım koşulları belirlenmiştir. Deneyler neticesinde kalsine midye kabuğu tozu ile kurşun, nikel ve bakır ağır metallerinin arıtımında sırasıyla %98,79, %99,67 ve %99,37’lik yüksek arıtım verimleri elde edilmiştir. Kalsine midye kabuğu tozu ve diğer kimyasalların birbirlerine yakın dozajlarında etkili ağır metal gideriminin sağlanabildiği tespit edilmiştir. Midye kabuğu sağladığı bu yüksek verimlere karşın daha düşük nihai pH değerlerinin elde edilmesine neden olmuştur. Tüm bu hususlar bir arada değerlendirildiğinde kalsine midye kabuğu tozunun doğal bir materyal olması ve doğada bol miktarda bulunması nedeniyle diğer çöktürücü ajanlara bir alternatif olabileceği ortaya konmuştur.

Kaynakça

  • Amen R., Yaseen M., Mukhtar A., Klemeš J.J., Saqib S., Ullah S., Al-Sehemi A.G., Rafiq S., Babar M., Fatt C.L., Ibrahim M., Asif S., Qureshi K.S., Akbar M.M., Bokhari A., Lead and cadmium removal from wastewater using eco-friendly biochar adsorbent derived from rice husk, wheat straw, and corncob, Clean. Eng. Technol., 1, 100006, 2020.
  • Moersidik S.S., Nugroho R., Handayani M., Kamilawati, Pratama M.A., Optimization and reaction kinetics on the removal of Nickel and COD from wastewater from electroplating industry using Electrocoagulation and Advanced Oxidation Processes, Heliyon, 6, e03319, 2020.
  • Zeng Z., Zheng P., Da K., Li Y., Li W., Dongdong X., Chen W., Pan C., The removal of copper and zinc from swine wastewater by anaerobic biological-chemical process: Performance and mechanism, J. Hazard. Mater., 401, 123767, 2021.
  • Adigun O.A., Oninla V.O., Babarinde N.A.A., Oyedotun K.O., Manyala N., Characterization of sugarcane leaf-biomass and investigation of its efficiency in removing Nickel(II), Chromium(III) and Cobalt(II) ions from polluted water, Surfaces and Interfaces, 20, 100621, 2020.
  • Zhang P., Ouyang S., Li P., Sun Z., Ding N., Huang Y., Ultrahigh removal performance of lead from wastewater by tricalcium aluminate via precipitation combining flocculation with amorphous aluminum, J. Clean. Prod. 246, 118728, 2020.
  • Yan Y., Liang X., Ma J., Shen J., Rapid removal of copper from wastewater by Fe-based amorphous alloy, Intermetallics, 124, 106849, 2020.
  • Kumar M., Nandi M., Pakshirajan K., Recent advances in heavy metal recovery from wastewater by biogenic sulfide precipitation, J. Environ. Manage., 278, 111555, 2021.
  • Carolin C.F., Kumar P.S., Saravanan A., Joshiba G.J., Naushad M., Efficient techniques for the removal of toxic heavy metals from aquatic environment: A review, J. Environ. Chem. Eng., 5, 2782–2799, 2017.
  • Bratskaya S.Y., Pestov A.V., Yatluk Y.G., Avramenko V.A., Heavy metals removal by flocculation/ precipitation using N-(2-carboxyethyl)chitosans, Colloids Surfaces A Physicochem. Eng. Asp., 339, 140–144, 2009.
  • Li X., Zhang Q., Yang B., Co-precipitation with CaCO3 to remove heavy metals and significantly reduce the moisture content of filter residue, Chemosphere, 239, 124660, 2020.
  • Zewail T.M., Yousef N.S., Kinetic study of heavy metal ions removal by ion exchange in batch conical air spouted bed, Alexandria Eng. J., 54, 83–90, 2015.
  • Šoštarić T.D., Petrović M.S., Pastor F.T., Lončarević D.R., Petrović J.T., Milojković J. V., Stojanović M.D., Study of heavy metals biosorption on native and alkali-treated apricot shells and its application in wastewater treatment, J. Mol. Liq., 259, 340–349, 2018.
  • Castro-Muñoz R., González-Melgoza L.L., García-Depraect O., Ongoing progress on novel nanocomposite membranes for the separation of heavy metals from contaminated water, Chemosphere, 270, 129421, 2021.
  • Brudey T., Largitte L., Jean-Marius C., Tant T., Dumesnil P.C., Lodewyckx P., Adsorption of lead by chemically activated carbons from three lignocellulosic precursors, J. Anal. Appl. Pyrolysis, 120, 450–463, 2016.
  • Tran T.-K., Chiu K.-F., Lin C.-Y., Leu H.-J., Electrochemical treatment of wastewater: Selectivity of the heavy metals removal process, Int. J. Hydrogen Energy, 42, 27741–27748, 2017.
  • Hunsom M., Pruksathorn K., Damronglerd S., Vergnes H., Duverneuil P., Electrochemical treatment of heavy metals (Cu2+, Cr6+, Ni2+) from industrial effluent and modeling of copper reduction, Water Res., 39, 610–616, 2005.
  • Gürel L., Applications of the biosorption process for nickel removal from aqueous solutions - a review, Chem. Eng. Commun., 204, 711–722, 2017.
  • Chen Q., Yao Y., Li X., Lu J., Zhou J., Huang Z., Comparison of heavy metal removals from aqueous solutions by chemical precipitation and characteristics of precipitates, J. Water Process Eng., 26, 289–300, 2018.
  • Baltpurvins K.A., Burns R.C., Lawrance G.A., Heavy metals in wastewater: Modelling the hydroxide precipitation of copper(II) from wastewater using lime as the precipitant, Waste Manag., 16, 717–725, 1996.
  • Zhang X., Tian J., Hu Y., Han H., Luo X., Sun W., Yue T., Wang L., Cao X., Zhou H., Selective sulfide precipitation of copper ions from arsenic wastewater using monoclinic pyrrhotite, Sci. Total Environ., 705, 135816, 2020.
  • El Haddad M., Regti A., Laamari M.R., Slimani R., Mamouni R., El Antri S., Lazar S., Calcined mussel shells as a new and eco-friendly biosorbent to remove textile dyes from aqueous solutions, J. Taiwan Inst. Chem. Eng., 45, 533–540, 2014.
  • Liu Y., Sun C., Xu J., Li Y., The use of raw and acid-pretreated bivalve mollusk shells to remove metals from aqueous solutions, J. Hazard. Mater., 168, 156–162, 2009.
  • Peña-Rodríguez S., Fernández-Calviño D., Nóvoa-Muñoz J.C., Arias-Estévez M., Núñez-Delgado A., Fernández-Sanjurjo M.J., Álvarez-Rodríguez E., Kinetics of Hg(II) adsorption and desorption in calcined mussel shells, J. Hazard. Mater., 180, 622–627, 2010.
  • Gürel L., Güneş S., Determination of heavy metal removal potential of the Samsun Coast mussel shells, Pamukkale University Journal of Engineering Sciences, 24, 1135–1140, 2018.
  • El Haddad M., Removal of Basic Fuchsin dye from water using mussel shell biomass waste as an adsorbent: Equilibrium, kinetics, and thermodynamics, J. Taibah Univ. Sci., 10, 664-674, 2016.
  • T.C. Çevre ve Orman Bakanlığı. Su kirliliği kontrolü yönetmeliği. https://www.mevzuat.gov.tr/mevzuat? MevzuatNo=7221&MevzuatTur=7&MevzuatTertip=5. Yayın tarihi Aralık 31, 2004. Erişim tarihi Şubat 1, 2022.
  • Öztürk İ., Timur H., Koşkan U., Atıksu Arıtımının Esasları, T.C. Çevre ve Orman Bakanlığı, Ankara, Türkiye, 2005.
  • Tünay O., Çevre Mühendisliğinde Kimyasal Prosesler, İTÜ, İstanbul, Türkiye, 1996.
  • Macchi G., Pagano M., Santori M., Tiravanti G., Battery industry wastewater: Pb removal and produced sludge, Water Res., 27, 1511–1518, 1993.
  • Tsai T.H., Chou H.W., Wu Y.F., Removal of nickel from chemical plating waste solution through precipitation and production of microsized nickel hydroxide particles, Sep. Purif. Technol., 251, 117315, 2020.
  • Yürekli Y., Determination of adsorption capacities of NaX Nano-particles against heavy metals and dyestuff, Journal of the Faculty of Engineering and Architecture of Gazi University, 34 (4), 2113-2124, 2019.
  • Öden M.K., Investigation of the success of physical and chemically modified process waste in heavy metal removal from synthetic wastewater, Journal of the Faculty of Engineering and Architecture of Gazi University 35 (1), 39-49, 2020.
  • Habte L., Shiferaw N., Thriveni T., Mulatu D., Lee M., Jung S., Ahn J.W., Removal of Cd(II) and Pb(II) from wastewater via carbonation of aqueous Ca(OH)2 derived from eggshell, Process Saf. Environ. Prot., 141, 278-287, 2020.
Toplam 33 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Ahmet Can Özcan 0000-0002-8271-2508

Levent Gürel 0000-0002-4801-2735

Yayımlanma Tarihi 7 Ekim 2022
Gönderilme Tarihi 15 Eylül 2021
Kabul Tarihi 26 Mart 2022
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

APA Özcan, A. C., & Gürel, L. (2022). Kalsine Karadeniz midye kabukları kullanılarak kimyasal çöktürmeyle Kurşun, Nikel ve Bakır giderimi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 38(2), 743-752. https://doi.org/10.17341/gazimmfd.995896
AMA Özcan AC, Gürel L. Kalsine Karadeniz midye kabukları kullanılarak kimyasal çöktürmeyle Kurşun, Nikel ve Bakır giderimi. GUMMFD. Ekim 2022;38(2):743-752. doi:10.17341/gazimmfd.995896
Chicago Özcan, Ahmet Can, ve Levent Gürel. “Kalsine Karadeniz Midye Kabukları kullanılarak Kimyasal çöktürmeyle Kurşun, Nikel Ve Bakır Giderimi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 38, sy. 2 (Ekim 2022): 743-52. https://doi.org/10.17341/gazimmfd.995896.
EndNote Özcan AC, Gürel L (01 Ekim 2022) Kalsine Karadeniz midye kabukları kullanılarak kimyasal çöktürmeyle Kurşun, Nikel ve Bakır giderimi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 38 2 743–752.
IEEE A. C. Özcan ve L. Gürel, “Kalsine Karadeniz midye kabukları kullanılarak kimyasal çöktürmeyle Kurşun, Nikel ve Bakır giderimi”, GUMMFD, c. 38, sy. 2, ss. 743–752, 2022, doi: 10.17341/gazimmfd.995896.
ISNAD Özcan, Ahmet Can - Gürel, Levent. “Kalsine Karadeniz Midye Kabukları kullanılarak Kimyasal çöktürmeyle Kurşun, Nikel Ve Bakır Giderimi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 38/2 (Ekim 2022), 743-752. https://doi.org/10.17341/gazimmfd.995896.
JAMA Özcan AC, Gürel L. Kalsine Karadeniz midye kabukları kullanılarak kimyasal çöktürmeyle Kurşun, Nikel ve Bakır giderimi. GUMMFD. 2022;38:743–752.
MLA Özcan, Ahmet Can ve Levent Gürel. “Kalsine Karadeniz Midye Kabukları kullanılarak Kimyasal çöktürmeyle Kurşun, Nikel Ve Bakır Giderimi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, c. 38, sy. 2, 2022, ss. 743-52, doi:10.17341/gazimmfd.995896.
Vancouver Özcan AC, Gürel L. Kalsine Karadeniz midye kabukları kullanılarak kimyasal çöktürmeyle Kurşun, Nikel ve Bakır giderimi. GUMMFD. 2022;38(2):743-52.