Araştırma Makalesi
BibTex RIS Kaynak Göster

Metallerin lazer katmanlı imalatında farklı proses parametrelerin etkisinin incelenmesi

Yıl 2018, Cilt: 33 Sayı: 2, 729 - 742, 06.04.2018
https://doi.org/10.17341/gazimmfd.416479

Öz

Metal malzemelere yönelik olarak fonksiyonel parça üretimi amaçlı uygulamaları yaygınlaşan katmanlı imalat teknolojileri için araştırmalar artarak devam etmektedir. Söz konusu katmanlı imalat teknolojileri kullanılan malzeme formu, malzeme ekleme tekniği, enerji girdisi çeşidi ve proses konfigürasyonu gibi pek çok konuda farklılıklar göstermektedir. Bunlar arasından lazerle metal toz ergitme yöntemi, yeni malzeme çeşitleri açısından sunduğu esneklik, ince geometrik unsurların üretilebilmesi ve yüzey kalitesinin diğer yöntemlere kıyasla iyi olması sebebi ile farklı endüstriler tarafından tercih edilmektedir. Bununla beraber söz konusu yöntemin doğasından gelen hızlı ergime ve katılaşma süreçleri sebebi ile iç gerilmeler artmakta, deformasyonlar oluşmakta ve bu sebeple parça geometrisi veya malzemesine bağlı olarak hedeflenen kalitede üretimler elde edilememektedir. Bu zorlukların üstesinden gelmek ancak prosesin farklı parametreler açısından optimize edilmesi ile mümkün olmaktadır. Bununla beraber ilgili proseste yer alan onlarca farklı parametrenin etkisinin tek bir araştırmacı veya kurum tarafından anlaşılması, zaman ve maliyet açısından uygulanabilir değildir. Bu sebeple bu çalışmada literatürde geçen farklı araştırmalar sistematik olarak gözden geçirilmiş, proseste kullanılan parametreler açıklanmış, farklı durumlarda karşılaşılan zorluklara dikkat çekilmiş ve bu zorlukların üstesinden gelebilmek için proses parametrelerinde yapılan geliştirmeler ortaya konmuştur.

Kaynakça

  • Poyraz, Ö., Yasa, E., Pilatin, S., Katmanlı İmalat Ve Talaşlı İmalatın Birlikte Uygulandığı Melez Üretim Sistemleri Üzerine, 6. Ulusal Talaşlı İmalat Sempozyumu, İstanbul, Türkiye, 103-115, 5-7 Kasım, 2015.
  • ASTM F2792-12a, Standard Terminology for Additive Manufacturing Technologies, ASTM International, 2012.
  • VDI 3404, Additive Manufacturing: Basics, Definitions, Processes, VDI, 2014.
  • Gibson, I., Rosen, D. W., Stucker, B., Additive manufacturing technologies: 3D printing, rapid prototyping, and direct digital manufacturing, Springer, New York, USA, 2014.
  • Aktimur, B., Gökpınar, E. S., Katmanlı Üretimin Havacılıktaki Uygulamaları, Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım Ve Teknoloji, 3(2), 463-469, 2015.
  • Çelik, İ., Karakoç, F., Çakır, M. C.,Duysak, A., Hızlı Prototipleme Teknolojileri Ve Uygulama Alanları, Journal Of The Institute Of Science & Technology Of Dumlupinar University, (31), 53-70, 2013.
  • Wohlers, T., Additive Manufacturing and 3D Printing State of the Industry, Wohlers Report, ISBN 0-9754429-9-6, 2013.
  • Kruth, J. P., Wang, X., Laoui, T., Froyen, L., Lasers and materials in selective laser sintering, Assembly Automation, 23(4), 357-371, 2003.
  • Yilmaz, O., Ugla, A. A., Microstructure characterization of SS308LSi components manufactured by GTAW-based additive manufacturing: shaped metal deposition using pulsed current arc, The International Journal of Advanced Manufacturing Technology, 89 (1), 13-25, 2016.
  • Chartoff, R. P., Priore, B., Klosterman, D. A., Pak, S. S., Composite tooling via laminated object manufacturing- A rapid and affordable method, Technology transfer in a global community, 1048-1059, 1996.
  • Gao, W., Zhang, Y., Ramanujan, D., Ramani, K., Chen, Y., Williams, C. B., Zavattieri, P. D., The status, challenges, and future of additive manufacturing in engineering, Computer-Aided Design, 69, 65-89, 2015.
  • Herderick, E., Additive manufacturing of metals: A review, Materials Science & Technology Conference, Ohio, USA, 1413-1425, 16-20 October, 2011.
  • Levy, G. N., Schindel, R., Kruth, J. P., Rapid manufacturing and rapid tooling with layer manufacturing (LM) technologies, state of the art and future perspectives, CIRP Annals-Manufacturing Technology, 52(2), 589-609, 2003.
  • Vayre, B., Vignat, F., Villeneuve, F., Metallic additive manufacturing: state-of-the-art review and prospects, Mechanics & Industry, 13(2), 89-96, 2012.
  • LPW Technology. Powder Range. http://www.lpwtechnology.com/wp-content/uploads/2016/11/LPW_Powders_Brochure-Nov-2016.pdf. Yayın tarihi Kasım 2016, Erişim tarihi Mayıs 2017.
  • Concept Laser. The Technology. https://www.concept-laser.de/en/technology.html. Yayın tarihi Aralık 2015. Erişim tarihi Mayıs 2017.
  • Materialise. Materialise Magics. http://www.materialise.com/en/software/materialise-magics. Yayın tarihi Ocak 2017. Erişim tarihi Mayıs 2017.
  • EOS. EOS Print 2.0. https://www.eos.info/systems_solutions/software/eosprint . Yayın tarihi Ocak 2017. Erişim tarihi Mayıs 2017.
  • Allen, S., Dutta, D., On the computation of part orientation using support structures in layered manufacturing, Proceedings of Solid Freeform Fabrication Symposium, Austin, Texas, USA, 259-269, 8-10 August, 1994.
  • Chua, C. K., Leong, K. F.,Lim, C. S., Rapid Prototyping: Principles and Applications 2nd Edition), World Scientific Publishing Co Inc., 2003.
  • Manfredi, D., Calignano, F., Krishnan, M., Canali, R., Ambrosio, E. P., Biamino, S. Fino, P., Additive manufacturing of al alloys and aluminium matrix composites (AMCs), Light Metal Alloys Applications, 11, 3-34, 2014.
  • Jhabvala, J., Study of the consolidation process under macro-and microscopic thermal effects in selective laser sintering and selective laser melting, Doctoral dissertation, ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE, 2010.
  • Godfrey, D., Advancing Aerospace Production with Arcam Electron Beam Melting Technology. http://www.arcamgroup.com/files/arcam-investor-day-march-9-2016-honeywell.pdf. Yayın tarihi Mart 2016. Erişim tarihi Mayıs 2017.
  • Zeng, K., Optimization of support structures for selective laser melting, Doctoral dissertation, University of Louisville, 2015.
  • Gong, H., Generation and detection of defects in metallic parts fabricated by selective laser melting and electron beam melting and their effects on mechanical properties, Doctoral dissertation, University of Louisville, 2013.
  • Pohl, H., Simchi, A., Issa, M., Dias, H. C.,Thermal stresses in direct metal laser sintering, Proceedings of the Solid Freeform Fabrication Symposium, Austin, Texas, USA, 366-372, 6-8 August, 2001.
  • Frank, D., Fadel, G., Expert system-based selection of the preferred direction of build for rapid prototyping processes, Journal of Intelligent Manufacturing, 6(5), 339-345, 1995.
  • Thomas, D. S., Gilbert, S. W., Costs and cost effectiveness of additive manufacturing, NIST Special Publication, 1176, 12, 2014.
  • Amini, M., Time Estimation for Additive Manufacturing, Doctoral dissertation, Texas State University, 2014.
  • Paul, R., Anand, S., Process energy analysis and optimization in selective laser sintering, Journal of Manufacturing Systems, 31(4), 429-437, 2012.
  • Mercelis, P., Control of selective laser sintering and selective laser melting processes, Doctoral dissertation, Catholic University of Leuven, 2007.
  • Wang, D., Yang, Y., Yi, Z.,Su, X., Research on the fabricating quality optimization of the overhanging surface in SLM process, The International Journal of Advanced Manufacturing Technology, 65(9-12), 1471-1484, 2013.
  • Moroni, G., Syam, W. P., Petrò, S., Functionality-based part orientation for additive manufacturing, Procedia CIRP, 36, 217-222, 2015.
  • Hague, R., Campbell, I., Dickens, P., Implications on design of rapid manufacturing, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 217(1), 25-30, 2003.
  • Ibrahim, D., Ding, S., Sun, S., Roughness Prediction for FDM Produced Surfaces, In International Conference Recent treads in Engineering and Technology, Batam, Indonesia, 70-75, 13-14 February, 2014.
  • Yasa, E., Poyraz, O., Solakoglu, E. U., Akbulut, G., Oren, S., A Study on the Stair Stepping Effect in Direct Metal Laser Sintering of a Nickel-based Superalloy, Procedia CIRP, 45, 175-178, 2016.
  • Cheng, W., Fuh, J. Y. H., Nee, A. Y. C., Wong, Y. S., Loh, H. T., Miyazawa, T., Multi-objective optimization of part-building orientation in stereolithography, Rapid Prototyping Journal, 1(4), 12-23, 1995.
  • Kobryn, P. A., Semiatin, S. L., Mechanical properties of laser-deposited Ti-6Al-4V, Proceedings of Solid Freeform Fabrication Symposium, Austin, Texas, USA, 179-186, 6-8 August, 2001.
  • Leuders, S., Thöne, M., Riemer, A., Niendorf, T., Tröster, T., Richard, H. A., Maier, H. J., On the mechanical behaviour of titanium alloy TiAl6V4 manufactured by selective laser melting: Fatigue resistance and crack growth performance, International Journal of Fatigue, 48, 300-307, 2013.
  • Kruth, J. P., Badrossamay, M., Yasa, E., Deckers, J., Thijs, L., Van Humbeeck, J. , Part and material properties in selective laser melting of metals, Proceedings of the 16th international symposium on electromachining, Shanghai, China, 1-12, 19-23 April, 2010.
  • Kruth, J. P., Levy, G., Klocke, F., Childs, T. H. C., Consolidation phenomena in laser and powder-bed based layered manufacturing, CIRP Annals-Manufacturing Technology, 56(2), 730-759, 2007.
  • Morgan, R. H., Papworth, A. J., Sutcliffe, C., Fox, P., O'neill, W., High density net shape components by direct laser re-melting of single-phase powders, Journal of Materials Science, 37(15), 3093-3100, 2002.
  • Simchi, A., Pohl, H., Effects of laser sintering processing parameters on the microstructure and densification of iron powder, Materials Science and Engineering: A, 359(1), 119-128, 2003.
  • Nelson, J. C., Selective laser sintering: a definition of the process and an empirical sintering model, Doctoral dissertation, University of Texas at Austin, 1993.
  • Williams, J., Miller, D., Deckard, C., Selective Laser Sintering Part Strength as Function of Andrew Number, Scan Rate and Spot Size, Proceedings of the Solid Freeform Fabrication Symposium, Austin, Texas, USA, 549-557, 12-14 August, 1996.
  • Chalancon, A., Bourell, D., Measured Energy Densities For Polyamide 12 And Comparison Of Values Calculated For Laser Sintering, Proceedings of the Solid Freeform Fabrication Symposium, Austin, Texas, USA, 2217-2223, 8-10 August, 2016.
  • Yap, C. Y., Chua, C. K., Dong, Z. L., Liu, Z. H., Zhang, D. Q., Loh, L. E., Sing, S. L., Review of selective laser melting: Materials and applications, Applied Physics Reviews, 2(4), 041101, 2015.
  • Sufiiarov, V. S., Popovich, A. A., Borisov, E. V., Polozov, I. A., Masaylo, D. V., Orlov, A. V., The Effect of Layer Thickness at Selective Laser Melting, Procedia Engineering, 174, 126-134, 2017.
  • Zaeh, M. F.,Branner, G., Investigations on residual stresses and deformations in selective laser melting, Production Engineering, 4(1), 35-45, 2010.
  • Van Belle, L., Vansteenkiste, G.,Boyer, J. C., Comparisons of numerical modelling of the Selective Laser Melting, In Key Engineering Materials, 504, 1067-1072, 2012.
  • Papadakis, L., Branner, G., Schober, A., Richter, K. H., Uihlein, T., Numerical modeling of heat effects during thermal manufacturing of aero engine components, In World Congress on Engineering, London, UK, 4-6 July, 2012.
  • Yuan, P., Gu, D., Molten pool behaviour and its physical mechanism during selective laser melting of TiC/AlSi10Mg nanocomposites: simulation and experiments, Journal of Physics D: Applied Physics, 48(3), 1-16, 2015.
  • Cheng, B., Shrestha, S., Chou, K., Stress and deformation evaluations of scanning strategy effect in selective laser melting, Additive Manufacturing, 12, 240-251, 2016.
  • Stamp, R., Fox, P., O’neill, W., Jones, E., & Sutcliffe, C., The development of a scanning strategy for the manufacture of porous biomaterials by selective laser melting, Journal of Materials Science: Materials in Medicine, 20(9), 1839 -1848, 2009.
  • Mercelis, P., Kruth, J. P., Residual stresses in selective laser sintering and selective laser melting, Rapid Prototyping Journal, 12(5), 254-265, 2006.
  • Yadroitsev, I., Bertrand, P., Smurov, I., Parametric analysis of the selective laser melting process, Applied surface science, 253(19), 8064-8069, 2007.
  • Mertens, R., Clijsters, S., Kempen, K., Kruth, J. P., Optimization of scan strategies in selective laser melting of aluminum parts with downfacing areas, Journal of Manufacturing Science and Engineering, 136(6), 061012 1-7, 2014.
  • Poyraz, Ö., Yasa, E., Akbulut, G., Pilatin, S., Investigation of Support Structures for Direct Metal Laser Sintering (DMLS) of In625 Parts, Proceedings of the Solid Freeform Fabrication Symposium, Austin, Texas, USA, 560-574, 7-9 August, 2015.
  • Mullen, L., Stamp, R. C., Brooks, W. K., Jones, E., Sutcliffe, C. J., Selective Laser Melting: A regular unit cell approach for the manufacture of porous, titanium, bone in‐growth constructs, suitable for orthopedic applications, Journal of Biomedical Materials Research Part B: Applied Biomaterials, 89(2), 325-334, 2009.
  • Mumtaz, K. A., Vora, P., Hopkinson, N., A method to eliminate anchors/supports from directly laser melted metal powder bed processes, Proceedings of the Solid Freeform Fabrication Symposium, Austin, Texas, USA, 55-64, 8-10 August, 2011
  • Krol, T. A., Zäh, M. F., Seidel, C., Optimization of supports in metal-based additive manufacturing by means of finite element models, Proceedings of the Solid Freeform Fabrication Symposium, Austin, Texas, USA, 707-718, 6-8 August, 2012.
  • Calignano, F., Design optimization of supports for overhanging structures in aluminum and titanium alloys by selective laser melting, Materials & Design, 64, 203-213, 2014.
  • Cooper, K., Steele, P., Cheng, B., Chou, K., Contact-Free Support Structures for Part Overhangs in Powder-Bed Metal Additive Manufacturing, Proceedings of SME RAPID Conference, Orlando, Florida, USA, 1-12, May 16-19, 2016.
  • Cloots, M., Spierings, A. B., Wegener, K., Assessing new support minimizing strategies for the additive manufacturing technology SLM, Proceedings of the Solid Freeform Fabrication Symposium, Austin, Texas, USA, 631-643, 12-14 August, 2013.
  • Gan, M. X., Wong, C. H., Practical support structures for selective laser melting. Journal of Materials Processing Technology, 238, 474-484, 2016.
  • Hussein, A., Hao, L., Yan, C., Everson, R., Young, P., Advanced lattice support structures for metal additive manufacturing, Journal of Materials Processing Technology, 213(7), 1019-1026, 2013.
  • Krol, T. A., Seidel, C., Schilp, J., Hofmann, M., Gan, W., Zaeh, M. F., Verification of structural simulation results of metal-based additive manufacturing by means of neutron diffraction, Physics Procedia, 41, 849-857, 2013.
  • Brandl, E., Heckenberger, U., Holzinger, V., Buchbinder, D., Additive manufactured AlSi10Mg samples using Selective Laser Melting (SLM): Microstructure, high cycle fatigue, and fracture behavior. Materials & Design, 34, 159-169, 2012.
  • Thomas, D., The development of design rules for selective laser melting, Doctoral dissertation, University of Wales, 2009.
  • Solakoğlu, E.U, Yılmaz, R., Ören, S., Akbulut, G. Poyraz, Ö., Yasa, E., Process Limits of DMLS in Terms of Minimum Hole and Boss Diameters with Varying Aspect Ratios, International Conference On Machine Design And Production, Bursa, Türkiye, 12-15 Temmuz, 2016.
  • Sih, S. S., & Barlow, J. W., The prediction of the emissivity and thermal conductivity of powder beds, Particulate Science and Technology, 22(4), 427-440, 2004.
  • Attar, E., Simulation of selective electron beam melting processes, Doctoral dissertation, University of Erlangen-Nurnberg, 2011.
  • Kundakcioglu, E., Lazoglu, I., Rawal, S., Transient thermal modeling of laser-based additive manufacturing for 3D freeform structures, The International Journal of Advanced Manufacturing Technology, 85(1-4), 493-501, 2016.
  • Ding, J., Colegrove, P., Mehnen, J., Ganguly, S., Almeida, P. S., Wang, F., Williams, S., Thermo-mechanical analysis of wire and arc additive layer manufacturing process on large multi-layer parts, Computational Materials Science, 50(12), 3315-3322, 2011.
  • Zeng, K., Pal, D., Stucker, B., A review of thermal analysis methods in Laser Sintering and Selective Laser Melting, Proceedings of the Solid Freeform Fabrication Symposium, Austin, Texas, USA, 796-814, 6-8 August, 2012.
  • Patil, N., Pal, D., Stucker, B. E., A new finite element solver using numerical Eigen modes for fast simulation of additive manufacturing processes, Proceedings of the Solid Freeform Fabrication Symposium, Austin, Texas, USA, 12-14, 12-14 August, 2013.
  • Craeghs, T., Clijsters, S., Yasa, E., Kruth, J. P., Online quality control of selective laser melting Proceedings of the Solid Freeform Fabrication Symposium, Austin, Texas, USA, 212-226, 8-10 August, 2011.
  • Hofman, J. T., Development of an observation and control system for industrial laser cladding, Doctoral dissertation, University of Twente. 2009.
  • Islam, M., Purtonen, T., Piili, H., Salminen, A., Nyrhilä, O. , Temperature profile and imaging analysis of laser additive manufacturing of stainless steel, Physics Procedia, 41, 835-842, 2013.
Toplam 79 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Özgür Poyraz

Melih Cemal Kuşhan

Yayımlanma Tarihi 6 Nisan 2018
Gönderilme Tarihi 22 Mayıs 2017
Kabul Tarihi 15 Kasım 17
Yayımlandığı Sayı Yıl 2018 Cilt: 33 Sayı: 2

Kaynak Göster

APA Poyraz, Ö., & Kuşhan, M. C. (2018). Metallerin lazer katmanlı imalatında farklı proses parametrelerin etkisinin incelenmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 33(2), 729-742. https://doi.org/10.17341/gazimmfd.416479
AMA Poyraz Ö, Kuşhan MC. Metallerin lazer katmanlı imalatında farklı proses parametrelerin etkisinin incelenmesi. GUMMFD. Haziran 2018;33(2):729-742. doi:10.17341/gazimmfd.416479
Chicago Poyraz, Özgür, ve Melih Cemal Kuşhan. “Metallerin Lazer Katmanlı imalatında Farklı Proses Parametrelerin Etkisinin Incelenmesi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 33, sy. 2 (Haziran 2018): 729-42. https://doi.org/10.17341/gazimmfd.416479.
EndNote Poyraz Ö, Kuşhan MC (01 Haziran 2018) Metallerin lazer katmanlı imalatında farklı proses parametrelerin etkisinin incelenmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 33 2 729–742.
IEEE Ö. Poyraz ve M. C. Kuşhan, “Metallerin lazer katmanlı imalatında farklı proses parametrelerin etkisinin incelenmesi”, GUMMFD, c. 33, sy. 2, ss. 729–742, 2018, doi: 10.17341/gazimmfd.416479.
ISNAD Poyraz, Özgür - Kuşhan, Melih Cemal. “Metallerin Lazer Katmanlı imalatında Farklı Proses Parametrelerin Etkisinin Incelenmesi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 33/2 (Haziran 2018), 729-742. https://doi.org/10.17341/gazimmfd.416479.
JAMA Poyraz Ö, Kuşhan MC. Metallerin lazer katmanlı imalatında farklı proses parametrelerin etkisinin incelenmesi. GUMMFD. 2018;33:729–742.
MLA Poyraz, Özgür ve Melih Cemal Kuşhan. “Metallerin Lazer Katmanlı imalatında Farklı Proses Parametrelerin Etkisinin Incelenmesi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, c. 33, sy. 2, 2018, ss. 729-42, doi:10.17341/gazimmfd.416479.
Vancouver Poyraz Ö, Kuşhan MC. Metallerin lazer katmanlı imalatında farklı proses parametrelerin etkisinin incelenmesi. GUMMFD. 2018;33(2):729-42.