Araştırma Makalesi
BibTex RIS Kaynak Göster

Değişik karışım oranlarına göre ZDDP katkı maddesinin aşınma önleyici veriminin araştırılması

Yıl 2019, Cilt: 34 Sayı: 4, 2045 - 2060, 25.06.2019
https://doi.org/10.17341/gazimmfd.419605

Öz

İçten yanmalı motorlarda sürtünmeyi azaltmak ve hareketli parçaları
aşınmadan korumak maksadıyla baz yağ ve katkı maddelerinden oluşan yağlama
yağları kullanılmaktadır. ZDDP yağlama yağları içerisinde aşınmayı azaltma ve
önleme konusunda görevli günümüzde ticari motor yağları içerisinde en çok
kullanılan katkı maddesidir. Ancak bu katkı maddesi çevreye zararlı fosfor
elementi içermekte ve araç katalitik konvertörlerini zehirlemektedir. Bu çalışmada
yağlama yağlarının içeriğindeki ZDDP oranı azaltarak zehirlemenin etkilerini
azaltmak maksadıyla % 1, 3 ve 5 oranları gibi düşük konsantrasyonlardaki baz
madeni yağ ZDDP karışımlarının aşınma performansları tribometre testleri ve
yüzey analizleri ile araştırılmıştır. Çalışma sonuçları % 3 ve 5 ZDDP+ baz yağ
karışımının aşınma önleyici tribofilmi yüzeyde oluşturduğu ve birbirine yakın
aşınma oranları ile yağlama yağlarının içerisinde kullanılabileceğini
göstermiştir.

Kaynakça

  • [1] Srivastava, K.D., Agarwal, A.K., Kumar, J., “Effect of liner surface properties on wear and friction in a non-firing engine simulator”, Wear, Vol. 28 No. 1, 1632-1640, (2007).
  • [2] Taylor, C.M., Engine Tribology: Elsevier Science, Elsevier, Melbourne, (1993).
  • [3] Pawlak, Z., Tribochemistry of Lubricating Oils. Elsevier Science, (2003).
  • [4] Mang, T., Dresel, W., Lubricants and Lubrication, Second Edition, WILEY-VCH GmbH, Weinheim, Germany, (2007).
  • [5] Barnes, A.M., Bartle, K.D. and Thibon, V.R.A., “A review of zinc dialkyldithiophosphates (ZDDPS): characterisation and role in the lubricating oil”, Tribology International, Vol. 34 No. 6, 389-395, (2001).
  • [6] Hsu, S.M., Gates, R.S., “Boundary lubricating films: formation and lubrication mechanism”, Tribology International, 38, 305–312, (2005).
  • [7] Nicholls, M.A., Do, T., Norton P.R., Kasrai, M. ve Bancroft, M.G.,“Review of the lubrication of metallic surfaces by zinc dialkyl-dithiophosphates”, Tribology International, 38, 15-39, (2005).
  • [8] Fuller, M.L.S., Kasrai, M., Bancroft, G.M., Fyfe, K., Tan, K.H., Tribology International, 31, 627, (1998).
  • [9] Heuberger, R., Rossi, A., Spencer, N.D., “XPS study of the influence of temperature on ZnDTP tribofilm composition”, Tribology Letters, 25, 185-196, (2007).
  • [10] Berkani, S. Dassenoy, F., Minfray, C., Martin, J.M., Cardon, H., Montagnac, G., Reynard, B., “Structural Changes in Tribo-Stressed Zinc Polyphosphates”, Tribology Letters, 51, 489–498, (2013).
  • [11] Warren, O.L., Graham, J.F., Norton, P.R., Houston, J.E., Michalske, T.E., “Nanomchanical properties of films derived from zincdialkyldithiophosphates”, Tribology Letters, 4(2), 189–98, (1998).
  • [12] Pidduck, A.J., Smith, G.C., “Scanning probe microscopy of automotive anti-wear films”, Wear, 212, 254-264, (1997).
  • [13] Warren, O.L., Graham, J.F., Norton, P.R., Houston, J.E., Michalske, T.A., “Nanomechanical properties of films derived from zinc dialkyldithiophosphate”, Tribology Letters, 4, 189-198, (1998).
  • [14] Graham, J.F., McCague, C., Norton, P.R., “Topography and nanomechanical properties of tribochemical films derived from zinc dialkyl and diaryl dithiophosphates”, Tribology Letters, 6, 149-157, (1999).
  • [15] Aktary, M., McDermott, M.T., Torkelson, J., “Morphological evolution of films formed from thermooxidative decomposition of ZDDP”, Wear, 247, 172-179, (2001).
  • [16] Bancroft, G.M., Kasrai, M., Fuller, M., Yin, Z., Fyfe, K., Tan, K.H., “Mechanisms of tribochemical film formation:stabilityof tribo- and thermally-generated ZDDP films”, Tribology Letters, 3, 47-51, (1997).
  • [17] Hutchins, I.M., Tribology–Friction & Wear of Engineering Materials, Butterworth-Heinemann, London, 158–159, (1992).
  • [18] Taylor, L., Spikes, H.A., “Friction-Enhancing Properties of ZDDP Antiwear Additive: Part I—Friction and Morphology of ZDDP Reaction Films”, Tribology Transactions, 46, 303-309, (2003).
  • [19] Taylor, L., Spikes, H.A., “Friction-Enhancing Properties of ZDDP Antiwear Additive: Part II—Influence of ZDDP Reaction Films on EHD Lubrication”, Tribology Transactions, 46, 310-314, (2003).
  • [20] Kano, M., Mabuchi, Y., Ishikawa, T., Sano, A., “The effect of ZDDP in CVT fluid on increasing the traction capacity of belt‐drive continuously variable transmissions”, Wakiz-ono, T., Lubrication Science, 11, 365-379, (1999).
  • [21] Spikes, H.A., “The history and mechanisms of ZDDP”, Tribology Letters, 17 (3), 469-489, (2004).
  • [22] Morina, A., Neville, A., Priest, M., Green, J.H., “ZDDP and MoDTC interactions in boundary lubrication—The effect of temperature and ZDDP/MoDTC ratio”, Tribology International, 39, 1545-1557, (2006).
  • [23] Morina, A., Neville, A., Priest, M., Green, J.H., “ZDDP and MoDTC interactions and their effect on tribological performance–tribofilm characteristics and its evolution, Tribology Letters, 24 (3), 243-256, (2006).
  • [24] http://www.oilspecifications.org. (Erişim tarihi: Mart 2018).
  • [25] Service Fill Oils for Gasoline Engines Light Duty Diesel Engines (2016), Engines with aftertreatment devices and heavy-duty diesel engines. ACEA European Oil Sequences, Bruxelles.
  • [26] Wilkins, A.J.J., Hannington, N.A., “The effect of fuel and oil additives on automobile catalyst performance”, Platinum Metals, 34, 16-24, (1990).
  • [27] Katafuchi, T., Shimizu, N., “Evaluation of the antiwear and friction reduction characteristics of mercaptocarboxylate derivatives as novel phosphorous-free additives”, Tribology International, 40, 1017-1024, (2007).
  • [28] Xui, L., Guo, G., Uy, D., O’Neill, A.E., Weber, W.H., Rokosz, M.J., McCabe, R.W., “Cerium Phosphate in Automotive Exhaust Catalyst Poisoning”, Applied Catalysis B: Environmental, 50, 113-125, (2004).
  • [29] Shelef, O. K., Otto, N.C., “Poisoning of Automotive Catalysts”, Advances in Catalysis, 27, 311-365, (1978).
  • [30] Özkan, D., Sulukan, E., “The anti-wear efficiency of boron succinimide on engine cylinder liner and piston ring surfaces”, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 40 (1), 1-20, (2018).
  • [31] Özkan, D., Yağcı, M.B., Birer, Ö., Kaleli, H., "Comparison of tribological performances of sulfur based and boron succuminide containing antiwear additive with ZDDP by engine bench tests", Industrial Lubrication and Tribology, 68 (4), 482 – 496, (2016).
  • [32] Akbari, S., Kovac, J., Kalin, M., “Effect of ZDDP concentration on the thermal film formation on steel, hydrogenated non-doped and Si-doped DLC”, Applied Surface Science, 383, (2016), 191-199.
  • [33] Aktary, M., McDermott, M.T., Torkelson, J., “Morphological evolution of films formed from thermooxidative decomposition of ZDDP”, Wear, 247, (2001), 172-179.
  • [34] ASTM International, Standard Test Method for Linearly Reciprocating Ball-on-Flat Sliding Wear, G133-05, 1-9, (2016).
  • [35] Dowson, D., “Elastohydrodynamic and micro-elastohydrodynamic lubrication”, Wear, 190, 125-138, (1995).
  • [36] Morina, A., Neville, A., Green, J. H., Priest, M., Additive/additive interactions in boundary lubrication - a study of film formation and tenacity, Tribology and Interface Engineering Series, 48, (2005), 757-767.
  • [37] Lubrecht, A.A., HVenner, C., Colin, F., “Film thickness calculation in elasto-hydrodynamic lubricated line and elliptical contacts: the Dowson, Higginson, Hamrock contribution”, Journal of Engineering Tribology, 223, 511-115, (2009).
  • [38] Suarez, A.N., Grahn, M., Pasaribu, R., Larsson, R., The influence of base oil polarity on the tribological performance of zinc dialkyl dithiophospate additives, Tribology International, 43, 2268-2278, (2010).
  • [39] Bouchet, M.I.B., Martin, J.M., Mogne, T., Vacher, Le-B., “Boundary lubrication mechanisms of carbon coatings by MoDTC and ZDDP additives”, Tribology International, 38, 257–264, (2005).
  • [40] Graham, J., Spikes, H., Korcek, S., The Friction Reducing Properties of Molybdenum Dialkyldithiocarbamate Additives: Part I — Factors Influencing Friction Reduction, Tribology Transactions, 44:4, (2001), 626-636.
  • [41] Barros, M.I.D., Bouchet, J., Raoult, I., Mogne, T.L., Martin, J.M., Kasrai, M., Yamada, Y., Friction reduction by metal sulfides in boundary lubrication studied by XPS and XANES analyses, Wear, 254, (2003), 863-870.
  • [42] Rudnick, L.R., Lubricant additives chemistry and applications, Marcel Dekker Inc., New York, (2003), 40-43.
  • [43] Miklozic, T., Forbus, K., Reg, T., Hugh, S.A., Performance of Friction Modifiers on ZDDP-Generated Surfaces, Proceedings of IJTC2006, (2006), 1-9.
  • [44] McQueen, J.S., Gaoa, H, Black, E.D., Gangopadhyay, A.K., Jensen, R.K., “Friction and wear of tribofilms formed by zinc dialkyl dithiophosphate antiwear additive in low viscosity engine oils”, Tribology International, 38, 289–297, (2005).
  • [45] Kapsa, P.H., Martin, J.M., Blanc, C., Georges, J.M., Antiwear mechanism of ZDDP in the presence of calcium sulfonate detergent, Journal of Tribology, 103, (1981), 486-494.
  • [46] Pirro, D.M., Webster, M., Daschner, E., Lubrication Fundamentals, Third Edition, CRC Press, New York, (2015).
  • [47] Zhang, Z., Yamaguchi, E. S., Kasrai, M. and Bancroft, G. M. Interaction of ZDDP with Borated Dispersant Using XANES and XPS, Tribology Transactions, 47 (4), (2004), 527-536.
  • [48] Leostean, C., Pana, O., Turcu, R., Soran, M. L., Macavei, S., Chauvet, O., Payen, C., Comparative study of core–shell iron/iron oxide gold covered magnetic nanoparticles obtained in different conditions, J. Nanopart. Res., 13, (2011), 6181–6192.
  • [49] Karama, S., Rawat, R.S., Lee, P., Tan, T.L., Ramanujan, R.V. Structural, elemental, optical and magnetic study of Fe doped ZnO and impurity phase formation, Progress in Natural Science: Materials International, 24, (2014), 142–149.
  • [50] Holst, B. and Bracco, G. Surface Science Technique, Springer Series in Surface Sciences, London, 51, (2013), 233-235.
  • [51] Yang, Y., Wang, X., Sun, C., Li, L., Photoluminescence of ZnO nanorod-TiO2 nanotube hybrid arrays produced by electrodeposition, Journal of Applied Physics, 105, (2009), 094304.
  • [52] Suzuki, A., Carbon related materials, Springer, New York, (2017), 20-22.
  • [53] Vasil’kov, A. Y., Naumkin, A. V., Volkov, I. O., Podshibikhin, V. L., Lisichkin, G. V., Khokhlov, A.R., XPS/TEM characterisation of Pt – Au/C cathode electrocatalysts prepared by metal vapour synthesis, Surface and Interface Analysis, 42, (2010), 559-563.
  • [54] Donnet, C., Erdemir, A., Tribology of Diamond-like Carbon Films: Fundamentals and Applications, Springer, New York, (2008), 622-624.
  • [55] Majjane, A., Chahine,A., Et-tabirou, M., Echchahed, B., Do, T.O., Breen, P.M., X-ray photoelectron spectroscopy (XPS) and FTIR studies of vanadium barium phosphate glasses, Materials Chemistry and Physics, 143, (2014), 779-787.
  • [56] Zhao, L., Natural phosphorus-doped honeycomb carbon materials as oxygen reduction catalysts derived from Pulsatilla chinensis (Bunge) Regel, RSC Adv., 7, (2017), 13904.
  • [57] Al Mahmud, K.A.H., Varman, M., Kalam, M.A., Masjuki, H.H., Mobarak, H.M., Zulki, N.W.M., Tribological characteristics of amorphous hydrogenated (a-C:H) and tetrahedral (ta-C) diamond-like carbon coating at different test temperatures in the presence of commercial lubricating oil, Surface and Coatings Technology, 245, (2014), 133-137.
  • [58] Haque, T., Morina, A., Nevilla, A., Effect of Friction Modifiers and Antiwear Additives on the Tribological Performance of a Hydrogenated DLC Coating, Journal of Tribology, 132, 032101-1.
  • [59] Mourhatch, R., Aswath, P.B., Tribological behavior and nature of tribofilms generated from fluorinated ZDDP in comparison to ZDDP under extreme pressure conditions—Part 1:Structure and chemistry of tribofilms, Tribology International, 44, (2011), 187-200.
  • [60]Shin, H.S., Jung, J.Y., Kim, S.W., Lee, K.W., XPS Analysis on Chemical Properties of Calcium Phosphate Thin Films and Osteoblastic HOS Cell Responses, J.Ind.Eng.Chem., 12 (3), (2006), 476-483.
  • [61] Long, J., Sim, L., Xu, S., Ostrikov, K., Reactive Plasma-Aided RF Sputtering Deposition of Hydroxyapatite Bio-implant Coatings, Chem. Vap. Deposition, 13, (2007), 299–306.
  • [62] Zhongyi, H., Liping, X., Sheng, H., Aixi, C., Jianwei, Q., et al. Tribological and Antioxidation Synergistic Effect Study of Sulfonate-Modified Nano Calcium Carbonate, PLoS ONE, 8(5), (2013), e62050.
  • [63] Dai, W., Kheireddin, B., Gao, H., Kan, Y., Clearfield, A., Liang, H., Formation of Anti-Wear Tribofilms via α-ZrP Nanoplatelet as Lubricant Additives, Lubricants, 4 (28), (2016), 403002.
Yıl 2019, Cilt: 34 Sayı: 4, 2045 - 2060, 25.06.2019
https://doi.org/10.17341/gazimmfd.419605

Öz

Kaynakça

  • [1] Srivastava, K.D., Agarwal, A.K., Kumar, J., “Effect of liner surface properties on wear and friction in a non-firing engine simulator”, Wear, Vol. 28 No. 1, 1632-1640, (2007).
  • [2] Taylor, C.M., Engine Tribology: Elsevier Science, Elsevier, Melbourne, (1993).
  • [3] Pawlak, Z., Tribochemistry of Lubricating Oils. Elsevier Science, (2003).
  • [4] Mang, T., Dresel, W., Lubricants and Lubrication, Second Edition, WILEY-VCH GmbH, Weinheim, Germany, (2007).
  • [5] Barnes, A.M., Bartle, K.D. and Thibon, V.R.A., “A review of zinc dialkyldithiophosphates (ZDDPS): characterisation and role in the lubricating oil”, Tribology International, Vol. 34 No. 6, 389-395, (2001).
  • [6] Hsu, S.M., Gates, R.S., “Boundary lubricating films: formation and lubrication mechanism”, Tribology International, 38, 305–312, (2005).
  • [7] Nicholls, M.A., Do, T., Norton P.R., Kasrai, M. ve Bancroft, M.G.,“Review of the lubrication of metallic surfaces by zinc dialkyl-dithiophosphates”, Tribology International, 38, 15-39, (2005).
  • [8] Fuller, M.L.S., Kasrai, M., Bancroft, G.M., Fyfe, K., Tan, K.H., Tribology International, 31, 627, (1998).
  • [9] Heuberger, R., Rossi, A., Spencer, N.D., “XPS study of the influence of temperature on ZnDTP tribofilm composition”, Tribology Letters, 25, 185-196, (2007).
  • [10] Berkani, S. Dassenoy, F., Minfray, C., Martin, J.M., Cardon, H., Montagnac, G., Reynard, B., “Structural Changes in Tribo-Stressed Zinc Polyphosphates”, Tribology Letters, 51, 489–498, (2013).
  • [11] Warren, O.L., Graham, J.F., Norton, P.R., Houston, J.E., Michalske, T.E., “Nanomchanical properties of films derived from zincdialkyldithiophosphates”, Tribology Letters, 4(2), 189–98, (1998).
  • [12] Pidduck, A.J., Smith, G.C., “Scanning probe microscopy of automotive anti-wear films”, Wear, 212, 254-264, (1997).
  • [13] Warren, O.L., Graham, J.F., Norton, P.R., Houston, J.E., Michalske, T.A., “Nanomechanical properties of films derived from zinc dialkyldithiophosphate”, Tribology Letters, 4, 189-198, (1998).
  • [14] Graham, J.F., McCague, C., Norton, P.R., “Topography and nanomechanical properties of tribochemical films derived from zinc dialkyl and diaryl dithiophosphates”, Tribology Letters, 6, 149-157, (1999).
  • [15] Aktary, M., McDermott, M.T., Torkelson, J., “Morphological evolution of films formed from thermooxidative decomposition of ZDDP”, Wear, 247, 172-179, (2001).
  • [16] Bancroft, G.M., Kasrai, M., Fuller, M., Yin, Z., Fyfe, K., Tan, K.H., “Mechanisms of tribochemical film formation:stabilityof tribo- and thermally-generated ZDDP films”, Tribology Letters, 3, 47-51, (1997).
  • [17] Hutchins, I.M., Tribology–Friction & Wear of Engineering Materials, Butterworth-Heinemann, London, 158–159, (1992).
  • [18] Taylor, L., Spikes, H.A., “Friction-Enhancing Properties of ZDDP Antiwear Additive: Part I—Friction and Morphology of ZDDP Reaction Films”, Tribology Transactions, 46, 303-309, (2003).
  • [19] Taylor, L., Spikes, H.A., “Friction-Enhancing Properties of ZDDP Antiwear Additive: Part II—Influence of ZDDP Reaction Films on EHD Lubrication”, Tribology Transactions, 46, 310-314, (2003).
  • [20] Kano, M., Mabuchi, Y., Ishikawa, T., Sano, A., “The effect of ZDDP in CVT fluid on increasing the traction capacity of belt‐drive continuously variable transmissions”, Wakiz-ono, T., Lubrication Science, 11, 365-379, (1999).
  • [21] Spikes, H.A., “The history and mechanisms of ZDDP”, Tribology Letters, 17 (3), 469-489, (2004).
  • [22] Morina, A., Neville, A., Priest, M., Green, J.H., “ZDDP and MoDTC interactions in boundary lubrication—The effect of temperature and ZDDP/MoDTC ratio”, Tribology International, 39, 1545-1557, (2006).
  • [23] Morina, A., Neville, A., Priest, M., Green, J.H., “ZDDP and MoDTC interactions and their effect on tribological performance–tribofilm characteristics and its evolution, Tribology Letters, 24 (3), 243-256, (2006).
  • [24] http://www.oilspecifications.org. (Erişim tarihi: Mart 2018).
  • [25] Service Fill Oils for Gasoline Engines Light Duty Diesel Engines (2016), Engines with aftertreatment devices and heavy-duty diesel engines. ACEA European Oil Sequences, Bruxelles.
  • [26] Wilkins, A.J.J., Hannington, N.A., “The effect of fuel and oil additives on automobile catalyst performance”, Platinum Metals, 34, 16-24, (1990).
  • [27] Katafuchi, T., Shimizu, N., “Evaluation of the antiwear and friction reduction characteristics of mercaptocarboxylate derivatives as novel phosphorous-free additives”, Tribology International, 40, 1017-1024, (2007).
  • [28] Xui, L., Guo, G., Uy, D., O’Neill, A.E., Weber, W.H., Rokosz, M.J., McCabe, R.W., “Cerium Phosphate in Automotive Exhaust Catalyst Poisoning”, Applied Catalysis B: Environmental, 50, 113-125, (2004).
  • [29] Shelef, O. K., Otto, N.C., “Poisoning of Automotive Catalysts”, Advances in Catalysis, 27, 311-365, (1978).
  • [30] Özkan, D., Sulukan, E., “The anti-wear efficiency of boron succinimide on engine cylinder liner and piston ring surfaces”, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 40 (1), 1-20, (2018).
  • [31] Özkan, D., Yağcı, M.B., Birer, Ö., Kaleli, H., "Comparison of tribological performances of sulfur based and boron succuminide containing antiwear additive with ZDDP by engine bench tests", Industrial Lubrication and Tribology, 68 (4), 482 – 496, (2016).
  • [32] Akbari, S., Kovac, J., Kalin, M., “Effect of ZDDP concentration on the thermal film formation on steel, hydrogenated non-doped and Si-doped DLC”, Applied Surface Science, 383, (2016), 191-199.
  • [33] Aktary, M., McDermott, M.T., Torkelson, J., “Morphological evolution of films formed from thermooxidative decomposition of ZDDP”, Wear, 247, (2001), 172-179.
  • [34] ASTM International, Standard Test Method for Linearly Reciprocating Ball-on-Flat Sliding Wear, G133-05, 1-9, (2016).
  • [35] Dowson, D., “Elastohydrodynamic and micro-elastohydrodynamic lubrication”, Wear, 190, 125-138, (1995).
  • [36] Morina, A., Neville, A., Green, J. H., Priest, M., Additive/additive interactions in boundary lubrication - a study of film formation and tenacity, Tribology and Interface Engineering Series, 48, (2005), 757-767.
  • [37] Lubrecht, A.A., HVenner, C., Colin, F., “Film thickness calculation in elasto-hydrodynamic lubricated line and elliptical contacts: the Dowson, Higginson, Hamrock contribution”, Journal of Engineering Tribology, 223, 511-115, (2009).
  • [38] Suarez, A.N., Grahn, M., Pasaribu, R., Larsson, R., The influence of base oil polarity on the tribological performance of zinc dialkyl dithiophospate additives, Tribology International, 43, 2268-2278, (2010).
  • [39] Bouchet, M.I.B., Martin, J.M., Mogne, T., Vacher, Le-B., “Boundary lubrication mechanisms of carbon coatings by MoDTC and ZDDP additives”, Tribology International, 38, 257–264, (2005).
  • [40] Graham, J., Spikes, H., Korcek, S., The Friction Reducing Properties of Molybdenum Dialkyldithiocarbamate Additives: Part I — Factors Influencing Friction Reduction, Tribology Transactions, 44:4, (2001), 626-636.
  • [41] Barros, M.I.D., Bouchet, J., Raoult, I., Mogne, T.L., Martin, J.M., Kasrai, M., Yamada, Y., Friction reduction by metal sulfides in boundary lubrication studied by XPS and XANES analyses, Wear, 254, (2003), 863-870.
  • [42] Rudnick, L.R., Lubricant additives chemistry and applications, Marcel Dekker Inc., New York, (2003), 40-43.
  • [43] Miklozic, T., Forbus, K., Reg, T., Hugh, S.A., Performance of Friction Modifiers on ZDDP-Generated Surfaces, Proceedings of IJTC2006, (2006), 1-9.
  • [44] McQueen, J.S., Gaoa, H, Black, E.D., Gangopadhyay, A.K., Jensen, R.K., “Friction and wear of tribofilms formed by zinc dialkyl dithiophosphate antiwear additive in low viscosity engine oils”, Tribology International, 38, 289–297, (2005).
  • [45] Kapsa, P.H., Martin, J.M., Blanc, C., Georges, J.M., Antiwear mechanism of ZDDP in the presence of calcium sulfonate detergent, Journal of Tribology, 103, (1981), 486-494.
  • [46] Pirro, D.M., Webster, M., Daschner, E., Lubrication Fundamentals, Third Edition, CRC Press, New York, (2015).
  • [47] Zhang, Z., Yamaguchi, E. S., Kasrai, M. and Bancroft, G. M. Interaction of ZDDP with Borated Dispersant Using XANES and XPS, Tribology Transactions, 47 (4), (2004), 527-536.
  • [48] Leostean, C., Pana, O., Turcu, R., Soran, M. L., Macavei, S., Chauvet, O., Payen, C., Comparative study of core–shell iron/iron oxide gold covered magnetic nanoparticles obtained in different conditions, J. Nanopart. Res., 13, (2011), 6181–6192.
  • [49] Karama, S., Rawat, R.S., Lee, P., Tan, T.L., Ramanujan, R.V. Structural, elemental, optical and magnetic study of Fe doped ZnO and impurity phase formation, Progress in Natural Science: Materials International, 24, (2014), 142–149.
  • [50] Holst, B. and Bracco, G. Surface Science Technique, Springer Series in Surface Sciences, London, 51, (2013), 233-235.
  • [51] Yang, Y., Wang, X., Sun, C., Li, L., Photoluminescence of ZnO nanorod-TiO2 nanotube hybrid arrays produced by electrodeposition, Journal of Applied Physics, 105, (2009), 094304.
  • [52] Suzuki, A., Carbon related materials, Springer, New York, (2017), 20-22.
  • [53] Vasil’kov, A. Y., Naumkin, A. V., Volkov, I. O., Podshibikhin, V. L., Lisichkin, G. V., Khokhlov, A.R., XPS/TEM characterisation of Pt – Au/C cathode electrocatalysts prepared by metal vapour synthesis, Surface and Interface Analysis, 42, (2010), 559-563.
  • [54] Donnet, C., Erdemir, A., Tribology of Diamond-like Carbon Films: Fundamentals and Applications, Springer, New York, (2008), 622-624.
  • [55] Majjane, A., Chahine,A., Et-tabirou, M., Echchahed, B., Do, T.O., Breen, P.M., X-ray photoelectron spectroscopy (XPS) and FTIR studies of vanadium barium phosphate glasses, Materials Chemistry and Physics, 143, (2014), 779-787.
  • [56] Zhao, L., Natural phosphorus-doped honeycomb carbon materials as oxygen reduction catalysts derived from Pulsatilla chinensis (Bunge) Regel, RSC Adv., 7, (2017), 13904.
  • [57] Al Mahmud, K.A.H., Varman, M., Kalam, M.A., Masjuki, H.H., Mobarak, H.M., Zulki, N.W.M., Tribological characteristics of amorphous hydrogenated (a-C:H) and tetrahedral (ta-C) diamond-like carbon coating at different test temperatures in the presence of commercial lubricating oil, Surface and Coatings Technology, 245, (2014), 133-137.
  • [58] Haque, T., Morina, A., Nevilla, A., Effect of Friction Modifiers and Antiwear Additives on the Tribological Performance of a Hydrogenated DLC Coating, Journal of Tribology, 132, 032101-1.
  • [59] Mourhatch, R., Aswath, P.B., Tribological behavior and nature of tribofilms generated from fluorinated ZDDP in comparison to ZDDP under extreme pressure conditions—Part 1:Structure and chemistry of tribofilms, Tribology International, 44, (2011), 187-200.
  • [60]Shin, H.S., Jung, J.Y., Kim, S.W., Lee, K.W., XPS Analysis on Chemical Properties of Calcium Phosphate Thin Films and Osteoblastic HOS Cell Responses, J.Ind.Eng.Chem., 12 (3), (2006), 476-483.
  • [61] Long, J., Sim, L., Xu, S., Ostrikov, K., Reactive Plasma-Aided RF Sputtering Deposition of Hydroxyapatite Bio-implant Coatings, Chem. Vap. Deposition, 13, (2007), 299–306.
  • [62] Zhongyi, H., Liping, X., Sheng, H., Aixi, C., Jianwei, Q., et al. Tribological and Antioxidation Synergistic Effect Study of Sulfonate-Modified Nano Calcium Carbonate, PLoS ONE, 8(5), (2013), e62050.
  • [63] Dai, W., Kheireddin, B., Gao, H., Kan, Y., Clearfield, A., Liang, H., Formation of Anti-Wear Tribofilms via α-ZrP Nanoplatelet as Lubricant Additives, Lubricants, 4 (28), (2016), 403002.
Toplam 63 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Doğuş Özkan 0000-0002-3044-4310

Yayımlanma Tarihi 25 Haziran 2019
Gönderilme Tarihi 29 Nisan 2018
Kabul Tarihi 22 Ocak 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 34 Sayı: 4

Kaynak Göster

APA Özkan, D. (2019). Değişik karışım oranlarına göre ZDDP katkı maddesinin aşınma önleyici veriminin araştırılması. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 34(4), 2045-2060. https://doi.org/10.17341/gazimmfd.419605
AMA Özkan D. Değişik karışım oranlarına göre ZDDP katkı maddesinin aşınma önleyici veriminin araştırılması. GUMMFD. Haziran 2019;34(4):2045-2060. doi:10.17341/gazimmfd.419605
Chicago Özkan, Doğuş. “Değişik karışım oranlarına göre ZDDP Katkı Maddesinin aşınma önleyici Veriminin araştırılması”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 34, sy. 4 (Haziran 2019): 2045-60. https://doi.org/10.17341/gazimmfd.419605.
EndNote Özkan D (01 Haziran 2019) Değişik karışım oranlarına göre ZDDP katkı maddesinin aşınma önleyici veriminin araştırılması. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 34 4 2045–2060.
IEEE D. Özkan, “Değişik karışım oranlarına göre ZDDP katkı maddesinin aşınma önleyici veriminin araştırılması”, GUMMFD, c. 34, sy. 4, ss. 2045–2060, 2019, doi: 10.17341/gazimmfd.419605.
ISNAD Özkan, Doğuş. “Değişik karışım oranlarına göre ZDDP Katkı Maddesinin aşınma önleyici Veriminin araştırılması”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 34/4 (Haziran 2019), 2045-2060. https://doi.org/10.17341/gazimmfd.419605.
JAMA Özkan D. Değişik karışım oranlarına göre ZDDP katkı maddesinin aşınma önleyici veriminin araştırılması. GUMMFD. 2019;34:2045–2060.
MLA Özkan, Doğuş. “Değişik karışım oranlarına göre ZDDP Katkı Maddesinin aşınma önleyici Veriminin araştırılması”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, c. 34, sy. 4, 2019, ss. 2045-60, doi:10.17341/gazimmfd.419605.
Vancouver Özkan D. Değişik karışım oranlarına göre ZDDP katkı maddesinin aşınma önleyici veriminin araştırılması. GUMMFD. 2019;34(4):2045-60.