Araştırma Makalesi
BibTex RIS Kaynak Göster

Fiziksel ve kimyasal olarak modifiye edilmiş proses atığının sentetik atıksudan ağır metal gideriminde başarısının araştırılması

Yıl 2020, Cilt: 35 Sayı: 1, 39 - 50, 25.10.2019
https://doi.org/10.17341/gazimmfd.417806

Öz

Bu çalışmanın amacı,
bor zenginleştirme tesisi çıkışından alınan posa atığının (BZA) ses ve asit ile
laboratuar ortamında modifiye edilerek (MBZA) nikel (Ni+2) ağır
metalinin adsorpsiyon sisteminde giderimine verimi araştırılmıştır. Deneysel
araştırma kesikli sistemle, farklı adsorban dozları (0,1-5 g/100 mL), farklı pH
(2-10), farklı temas süresi (0-150 dakika) ve farklı karıştırma hızlarında
(100, 200, 300, 400 rpm) gerçekleştirilmiştir. MBZA ait kimyasal özellikler ve
SEM görüntüleri belirlenmiştir. MBZA'nın nikel adsosorpsiyonu sırasında elde
edilen korelasyon katsayılarına göre Langmuir modeline daha uyumlu bulunmuştur.
Kinetik veriler arıtım sonucunda elde edilmiş olup MBZA için elde edilmiş olan
qmax değeri 16.01 mg/g’dir. 

Kaynakça

  • 1. Gürel, L., Applications of the Biosorption Process for Nickel Removal from Aqueous Solutions – A Review. Chemical Engineering Communications, 2017. 204(6): p. 711-722.2. Rao, M., A.V. Parwate, and A.G. Bhole, Removal of Cr6+ and Ni2+ from aqueous solution using bagasse and fly ash. Waste Management, 2002. 22(7): p. 821-830.3. Sheng, P.X., et al., Sorption of lead, copper, cadmium, zinc, and nickel by marine algal biomass: characterization of biosorptive capacity and investigation of mechanisms. Journal of Colloid and Interface Science, 2004. 275(1): p. 131-141.4. Bhatnagar, A. and A.K. Minocha, Biosorption optimization of nickel removal from water using Punica granatum peel waste. Colloids and Surfaces B: Biointerfaces, 2010. 76(2): p. 544-548.5. Patterson, J.W., Industrial Waste Water Treatment Technology (2nd ed.), . Butterworths Publishers, USA 1985.6. Boujelben, N., J. Bouzid, and Z. Elouear, Adsorption of nickel and copper onto natural iron oxide-coated sand from aqueous solutions: Study in single and binary systems. Journal of Hazardous Materials, 2009. 163(1): p. 376-382.7. El-Sadaawy, M. and O. Abdelwahab, Adsorptive removal of nickel from aqueous solutions by activated carbons from doum seed (Hyphaenethebaica) coat. Alexandria Engineering Journal, 2014. 53(2): p. 399-408.8. Dursun, Ş. and H.N. Köysüren, Sudan Kurşun Ve Nikel İyonlarinin Verbascum cheiranthifolium L. Materyali İle Giderimi. Gazi Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 2014. 29(3).9. Barros, F.C.F., et al., Removal of Copper, Nickel and Zinc Ions from Aqueous Solution by Chitosan-8-Hydroxyquinoline Beads. CLEAN – Soil, Air, Water, 2008. 36(3): p. 292-298.10. Tsai, W.-C., et al., Removal of copper, nickel, lead, and zinc using chitosan-coated montmorillonite beads in single- and multi-metal system. Desalination and Water Treatment, 2016. 57(21): p. 9799-9812.11. Abd El-Magied, M.O., et al., Removal of nickel (II) ions from aqueous solutions using modified activated carbon: A kinetic and equilibrium study. Journal of Dispersion Science and Technology, 2017: p. 1-12.12. Malkoc, E. and Y. Nuhoglu, Investigations of nickel(II) removal from aqueous solutions using tea factory waste. Journal of Hazardous Materials, 2005. 127(1): p. 120-128.13. Kadirvelu, K., K. Thamaraiselvi, and C. Namasivayam, Adsorption of nickel(II) from aqueous solution onto activated carbon prepared from coirpith. Separation and Purification Technology, 2001. 24(3): p. 497-505.14. Shi, Y., et al., Polyethylene imine modified hydrochar adsorption for chromium (VI) and nickel (II) removal from aqueous solution. Bioresource Technology, 2018. 247: p. 370-379.15. Abdelhadi, S.O., et al., Production of biochar from olive mill solid waste for heavy metal removal. Bioresource Technology, 2017. 244: p. 759-767.16. Köysüren, H.N. and Ş. Dursun, Sucul Ortamdan Ağır Metal İyonlarının Modifiye Edilmiş Kayısı Çekirdeği Kabuğu İle Giderimi. Gazi Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 2013. 28(2).17. Gök, O. and Ö. Çimen Mesutoğlu, Ağır Metallerin Giderimi İçin Düşük Maliyetli Adsorban Olarak Pirina Kullanımı. Gazi Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 2017. 32(2).18. De Angelis, G., et al., Recycling of eggshell waste into low-cost adsorbent for Ni removal from wastewater. Journal of Cleaner Production, 2017. 164: p. 1497-1506.19. Sertkaya, G. and B. Bayat, Kolemanit Atıklardan Biyoliç Yöntemi İle Borik Asit Eldesi. Ç.Ü Fen Bilimleri Enstitüsü 2008 17(7): p. 1-10.20. Bentli, T., et al., Bor Atıkları ve Değerlendirilme Stratejileri,. MMO, The First International Boron Symposium, Kütahya., 2002. http://www.maden.org.tr/resimler/ekler/c4ea5258ef3fb3f_ek.pdf (Bor Atıkları ve Değerlendirilme Stratejileri, ): p. 250-258.21. Aden, M., et al., Efficent removal of nickel(II) salts from aqueous solution using carboxymethylchitosan-coated silica particles as adsorbent. Carbohydrate Polymers, 2017. 173: p. 372-382.22. Uma, S. Banerjee, and Y.C. Sharma, Equilibrium and kinetic studies for removal of malachite green from aqueous solution by a low cost activated carbon. Journal of Industrial and Engineering Chemistry, 2013. 19(4): p. 1099-1105.23. Ho, Y.S. and G. McKay, Pseudo-second order model for sorption processes. Process Biochemistry, 1999. 34(5): p. 451-465.24. Weber, W.J. and J.C. Morris, Kinetics of adsorption on carbon from solution. J.Sanit. Eng. Div. Am. Soc. Civil Eng., 1963. 89: p. 31–60.25. Muthu Kumara Pandian, A., C. Karthikeyan, and M. Rajasimman, Isotherm and kinetic studies on nano-sorption of malachite green onto Aspergillus flavus mediated synthesis of silver nano particles. Environmental Nanotechnology, Monitoring & Management, 2016. 6: p. 139-151.26. Langmuir, I., The adsorption of gases on plane surface of glass, mica and platinum J. Am. Chem. Soc., , 1916. 40 p. 1361-1368.27. Freundlich, H., Über die absorption in lösungen. Über Die Adsorption in Lösungen, 1906: p. 385-470.28. Temkin, M.J. and V. Pyzhev, Recent modifications to Langmuir isotherms, Acta Physiochim, URSS, 1940. 12: p. 217.29. Ong, D.C., et al., Utilization of groundwater treatment plant (GWTP) sludge for nickel removal from aqueous solutions: Isotherm and kinetic studies. Journal of Environmental Chemical Engineering, 2017. 5(6): p. 5746-5753.30. Olgun, A. and N. Atar, Equilibrium, thermodynamic and kinetic studies for the adsorption of lead (II) and nickel (II) onto clay mixture containing boron impurity. Journal of Industrial and Engineering Chemistry, 2012. 18(5): p. 1751-1757.31. Lakhdhar, I., et al., Development of a bio-based sorbent media for the removal of nickel ions from aqueous solutions. Journal of Environmental Chemical Engineering, 2016. 4(3): p. 3159-3169.32. Okur, M. and F. Aktı, C.I. Asit Viyolet 90 Metal-Kompleks Boyarmaddesinin Sulu Ortamlardan Sentetik Ve Doğal Zeolit Kullanılarak Uzaklaştırılması. Gazi Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 2016. 31(3).

Investigation of the success of physical and chemically modified process waste in heavy metal removal from synthetic wastewater

Yıl 2020, Cilt: 35 Sayı: 1, 39 - 50, 25.10.2019
https://doi.org/10.17341/gazimmfd.417806

Öz

This study investigated
removal efficiency of nickel in adsorption system by using the process waste
obtained from the exit point of boron enrichment plant, modified with sound and
acid in laboratory. The experimental study was conducted in an intermittent
process by taking into account the criteria of different adsorbent dosages
(0,1-5 g/100 mL), pH (2-10), contact times (0-150 minutes) and mixing
speeds  (100, 200,300, 400 rpm). Chemical
properties and SEM images pertaining to modified boron enrichment waste (MBZA) were
specified. In nickel removal, it was observed that the obtained results were
found more concordant with Langmuir Isotherm models as evidenced by correlation
coefficients. Kinetics data were obtained from treatment results, and qmax
value obtained for MBZA were found as 16,01 mg/g.

Kaynakça

  • 1. Gürel, L., Applications of the Biosorption Process for Nickel Removal from Aqueous Solutions – A Review. Chemical Engineering Communications, 2017. 204(6): p. 711-722.2. Rao, M., A.V. Parwate, and A.G. Bhole, Removal of Cr6+ and Ni2+ from aqueous solution using bagasse and fly ash. Waste Management, 2002. 22(7): p. 821-830.3. Sheng, P.X., et al., Sorption of lead, copper, cadmium, zinc, and nickel by marine algal biomass: characterization of biosorptive capacity and investigation of mechanisms. Journal of Colloid and Interface Science, 2004. 275(1): p. 131-141.4. Bhatnagar, A. and A.K. Minocha, Biosorption optimization of nickel removal from water using Punica granatum peel waste. Colloids and Surfaces B: Biointerfaces, 2010. 76(2): p. 544-548.5. Patterson, J.W., Industrial Waste Water Treatment Technology (2nd ed.), . Butterworths Publishers, USA 1985.6. Boujelben, N., J. Bouzid, and Z. Elouear, Adsorption of nickel and copper onto natural iron oxide-coated sand from aqueous solutions: Study in single and binary systems. Journal of Hazardous Materials, 2009. 163(1): p. 376-382.7. El-Sadaawy, M. and O. Abdelwahab, Adsorptive removal of nickel from aqueous solutions by activated carbons from doum seed (Hyphaenethebaica) coat. Alexandria Engineering Journal, 2014. 53(2): p. 399-408.8. Dursun, Ş. and H.N. Köysüren, Sudan Kurşun Ve Nikel İyonlarinin Verbascum cheiranthifolium L. Materyali İle Giderimi. Gazi Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 2014. 29(3).9. Barros, F.C.F., et al., Removal of Copper, Nickel and Zinc Ions from Aqueous Solution by Chitosan-8-Hydroxyquinoline Beads. CLEAN – Soil, Air, Water, 2008. 36(3): p. 292-298.10. Tsai, W.-C., et al., Removal of copper, nickel, lead, and zinc using chitosan-coated montmorillonite beads in single- and multi-metal system. Desalination and Water Treatment, 2016. 57(21): p. 9799-9812.11. Abd El-Magied, M.O., et al., Removal of nickel (II) ions from aqueous solutions using modified activated carbon: A kinetic and equilibrium study. Journal of Dispersion Science and Technology, 2017: p. 1-12.12. Malkoc, E. and Y. Nuhoglu, Investigations of nickel(II) removal from aqueous solutions using tea factory waste. Journal of Hazardous Materials, 2005. 127(1): p. 120-128.13. Kadirvelu, K., K. Thamaraiselvi, and C. Namasivayam, Adsorption of nickel(II) from aqueous solution onto activated carbon prepared from coirpith. Separation and Purification Technology, 2001. 24(3): p. 497-505.14. Shi, Y., et al., Polyethylene imine modified hydrochar adsorption for chromium (VI) and nickel (II) removal from aqueous solution. Bioresource Technology, 2018. 247: p. 370-379.15. Abdelhadi, S.O., et al., Production of biochar from olive mill solid waste for heavy metal removal. Bioresource Technology, 2017. 244: p. 759-767.16. Köysüren, H.N. and Ş. Dursun, Sucul Ortamdan Ağır Metal İyonlarının Modifiye Edilmiş Kayısı Çekirdeği Kabuğu İle Giderimi. Gazi Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 2013. 28(2).17. Gök, O. and Ö. Çimen Mesutoğlu, Ağır Metallerin Giderimi İçin Düşük Maliyetli Adsorban Olarak Pirina Kullanımı. Gazi Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 2017. 32(2).18. De Angelis, G., et al., Recycling of eggshell waste into low-cost adsorbent for Ni removal from wastewater. Journal of Cleaner Production, 2017. 164: p. 1497-1506.19. Sertkaya, G. and B. Bayat, Kolemanit Atıklardan Biyoliç Yöntemi İle Borik Asit Eldesi. Ç.Ü Fen Bilimleri Enstitüsü 2008 17(7): p. 1-10.20. Bentli, T., et al., Bor Atıkları ve Değerlendirilme Stratejileri,. MMO, The First International Boron Symposium, Kütahya., 2002. http://www.maden.org.tr/resimler/ekler/c4ea5258ef3fb3f_ek.pdf (Bor Atıkları ve Değerlendirilme Stratejileri, ): p. 250-258.21. Aden, M., et al., Efficent removal of nickel(II) salts from aqueous solution using carboxymethylchitosan-coated silica particles as adsorbent. Carbohydrate Polymers, 2017. 173: p. 372-382.22. Uma, S. Banerjee, and Y.C. Sharma, Equilibrium and kinetic studies for removal of malachite green from aqueous solution by a low cost activated carbon. Journal of Industrial and Engineering Chemistry, 2013. 19(4): p. 1099-1105.23. Ho, Y.S. and G. McKay, Pseudo-second order model for sorption processes. Process Biochemistry, 1999. 34(5): p. 451-465.24. Weber, W.J. and J.C. Morris, Kinetics of adsorption on carbon from solution. J.Sanit. Eng. Div. Am. Soc. Civil Eng., 1963. 89: p. 31–60.25. Muthu Kumara Pandian, A., C. Karthikeyan, and M. Rajasimman, Isotherm and kinetic studies on nano-sorption of malachite green onto Aspergillus flavus mediated synthesis of silver nano particles. Environmental Nanotechnology, Monitoring & Management, 2016. 6: p. 139-151.26. Langmuir, I., The adsorption of gases on plane surface of glass, mica and platinum J. Am. Chem. Soc., , 1916. 40 p. 1361-1368.27. Freundlich, H., Über die absorption in lösungen. Über Die Adsorption in Lösungen, 1906: p. 385-470.28. Temkin, M.J. and V. Pyzhev, Recent modifications to Langmuir isotherms, Acta Physiochim, URSS, 1940. 12: p. 217.29. Ong, D.C., et al., Utilization of groundwater treatment plant (GWTP) sludge for nickel removal from aqueous solutions: Isotherm and kinetic studies. Journal of Environmental Chemical Engineering, 2017. 5(6): p. 5746-5753.30. Olgun, A. and N. Atar, Equilibrium, thermodynamic and kinetic studies for the adsorption of lead (II) and nickel (II) onto clay mixture containing boron impurity. Journal of Industrial and Engineering Chemistry, 2012. 18(5): p. 1751-1757.31. Lakhdhar, I., et al., Development of a bio-based sorbent media for the removal of nickel ions from aqueous solutions. Journal of Environmental Chemical Engineering, 2016. 4(3): p. 3159-3169.32. Okur, M. and F. Aktı, C.I. Asit Viyolet 90 Metal-Kompleks Boyarmaddesinin Sulu Ortamlardan Sentetik Ve Doğal Zeolit Kullanılarak Uzaklaştırılması. Gazi Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 2016. 31(3).
Toplam 1 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Muhammed Kamil Öden 0000-0002-0573-5634

Yayımlanma Tarihi 25 Ekim 2019
Gönderilme Tarihi 22 Nisan 2018
Kabul Tarihi 18 Haziran 2019
Yayımlandığı Sayı Yıl 2020 Cilt: 35 Sayı: 1

Kaynak Göster

APA Öden, M. K. (2019). Fiziksel ve kimyasal olarak modifiye edilmiş proses atığının sentetik atıksudan ağır metal gideriminde başarısının araştırılması. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 35(1), 39-50. https://doi.org/10.17341/gazimmfd.417806
AMA Öden MK. Fiziksel ve kimyasal olarak modifiye edilmiş proses atığının sentetik atıksudan ağır metal gideriminde başarısının araştırılması. GUMMFD. Ekim 2019;35(1):39-50. doi:10.17341/gazimmfd.417806
Chicago Öden, Muhammed Kamil. “Fiziksel Ve Kimyasal Olarak Modifiye Edilmiş Proses atığının Sentetik atıksudan ağır Metal Gideriminde başarısının araştırılması”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 35, sy. 1 (Ekim 2019): 39-50. https://doi.org/10.17341/gazimmfd.417806.
EndNote Öden MK (01 Ekim 2019) Fiziksel ve kimyasal olarak modifiye edilmiş proses atığının sentetik atıksudan ağır metal gideriminde başarısının araştırılması. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 35 1 39–50.
IEEE M. K. Öden, “Fiziksel ve kimyasal olarak modifiye edilmiş proses atığının sentetik atıksudan ağır metal gideriminde başarısının araştırılması”, GUMMFD, c. 35, sy. 1, ss. 39–50, 2019, doi: 10.17341/gazimmfd.417806.
ISNAD Öden, Muhammed Kamil. “Fiziksel Ve Kimyasal Olarak Modifiye Edilmiş Proses atığının Sentetik atıksudan ağır Metal Gideriminde başarısının araştırılması”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 35/1 (Ekim 2019), 39-50. https://doi.org/10.17341/gazimmfd.417806.
JAMA Öden MK. Fiziksel ve kimyasal olarak modifiye edilmiş proses atığının sentetik atıksudan ağır metal gideriminde başarısının araştırılması. GUMMFD. 2019;35:39–50.
MLA Öden, Muhammed Kamil. “Fiziksel Ve Kimyasal Olarak Modifiye Edilmiş Proses atığının Sentetik atıksudan ağır Metal Gideriminde başarısının araştırılması”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, c. 35, sy. 1, 2019, ss. 39-50, doi:10.17341/gazimmfd.417806.
Vancouver Öden MK. Fiziksel ve kimyasal olarak modifiye edilmiş proses atığının sentetik atıksudan ağır metal gideriminde başarısının araştırılması. GUMMFD. 2019;35(1):39-50.