Araştırma Makalesi
BibTex RIS Kaynak Göster

Production and characterization of hydrothermal carbon from waste lignocellulosic biomass

Yıl 2020, Cilt: 35 Sayı: 2, 1063 - 1076, 25.12.2019
https://doi.org/10.17341/gazimmfd.427448

Öz

Kaynakça

  • 1. Tekin, K., “Hydrothermal conversion of russian olive seeds into crude bio-oil using a CaO catalyst derived from waste mussel shells”, Energy & Fuels, Cilt 29, No 7, 4382-4392, 2015.
  • 2. Tekin, K., Karagöz, S. ve Bektaş, S., “A review of hydrothermal biomass processing”, Renewable and sustainable Energy reviews, Cilt 40, 673-687, 2014.
  • 3. Jain, A., Tekin, K. ve Srinivasan, M.P., “Mesoporous Adsorbents from Biomass: Opportunities and Challenges in Hydrothermal Treatment”, Air, Gas, and Water Pollution Control Using Industrial and Agricultural Solid Wastes Adsorbents, Editör: Sen, T.K., CRC Press New York, 2017.
  • 4. Hu, B., Wang, K., Wu, L., Yu, S.H., Antonietti, M. ve Titirici, M.M., “Engineering carbon materials from the hydrothermal carbonization process of biomass”, Advanced Materials, Cilt 22, No 7, 813-828, 2010.
  • 5. Marinovic, A., Pileidis, F.D. ve Titirici, M.-M., “Hydrothermal carbonisation (HTC): history, state-of-the-art and chemistry”, Porous Carbon Materials from Sustainable Precursors, No 32, 129, 2015.
  • 6. Kubo, S., Nanostructured carbohydrate-derived carbonaceous materials, University of Potsdam, Faculty of Mathematics and Natural Sciences, 2011.
  • 7. Titirici, M.-M., White, R.J., Falco, C. ve Sevilla, M., “Black perspectives for a green future: hydrothermal carbons for environment protection and energy storage”, Energy & Environmental Science, Cilt 5, No 5, 6796-6822, 2012.
  • 8. Titirici, M.-M. ve Antonietti, M., “Chemistry and materials options of sustainable carbon materials made by hydrothermal carbonization”, Chemical Society Reviews, Cilt 39, No 1, 103-116, 2010.
  • 9. Falco, C., Baccile, N. ve Titirici, M.-M., “Morphological and structural differences between glucose, cellulose and lignocellulosic biomass derived hydrothermal carbons”, Green Chemistry, Cilt 13, No 11, 3273-3281, 2011.
  • 10. Wang, T., Zhai, Y., Zhu, Y., Peng, C., Xu, B., Wang, T., Li, C. ve Zeng, G., “Acetic acid and sodium hydroxide-aided hydrothermal carbonization (HTC) of woody biomass for enhanced pelletization and fuel properties”, Energy & Fuels, 2017.
  • 11. Baccile, N., Laurent, G., Babonneau, F., Fayon, F., Titirici, M.-M. ve Antonietti, M., “Structural characterization of hydrothermal carbon spheres by advanced solid-state MAS 13C NMR investigations”, The Journal of Physical Chemistry C, Cilt 113, No 22, 9644-9654, 2009.
  • 12. Titirici, M.-M., Antonietti, M. ve Baccile, N., “Hydrothermal carbon from biomass: a comparison of the local structure from poly-to monosaccharides and pentoses/hexoses”, Green Chemistry, Cilt 10, No 11, 1204-1212, 2008.
  • 13. Xue, Y., Gao, B., Yao, Y., Inyang, M., Zhang, M., Zimmerman, A.R. ve Ro, K.S., “Hydrogen peroxide modification enhances the ability of biochar (hydrochar) produced from hydrothermal carbonization of peanut hull to remove aqueous heavy metals: batch and column tests”, Chemical Engineering Journal, Cilt 200, 673-680, 2012.
  • 14. Titirici, M.-M., Sustainable carbon materials from hydrothermal processes, John Wiley & Sons, 1118622200, 2013.
  • 15. Liu, W.-J., Jiang, H. ve Yu, H.-Q., “Thermochemical conversion of lignin to functional materials: a review and future directions”, Green Chemistry, Cilt 17, No 11, 4888-4907, 2015.
  • 16. Jain, A., Balasubramanian, R. ve Srinivasan, M., “Hydrothermal conversion of biomass waste to activated carbon with high porosity: A review”, Chemical Engineering Journal, Cilt 283, 789-805, 2016.
  • 17. Sevilla, M. ve Fuertes, A.B., “Chemical and structural properties of carbonaceous products obtained by hydrothermal carbonization of saccharides”, Chemistry-A European Journal, Cilt 15, No 16, 4195-4203, 2009.
  • 18. Sevilla, M. ve Fuertes, A.B., “The production of carbon materials by hydrothermal carbonization of cellulose”, Carbon, Cilt 47, No 9, 2281-2289, 2009.
  • 19. Sevilla, M., Fuertes, A.B. ve Mokaya, R., “High density hydrogen storage in superactivated carbons from hydrothermally carbonized renewable organic materials”, Energy & Environmental Science, Cilt 4, No 4, 1400-1410, 2011.
  • 20. Liu, Z., Quek, A., Hoekman, S.K. ve Balasubramanian, R., “Production of solid biochar fuel from waste biomass by hydrothermal carbonization”, Fuel, Cilt 103, 943-949, 2013.
  • 21. Simsir, H., Eltugral, N. ve Karagoz, S., “Hydrothermal carbonization for the preparation of hydrochars from glucose, cellulose, chitin, chitosan and wood chips via low-temperature and their characterization”, Bioresource Technology, Cilt 246, No Supplement C, 82-87, 2017.
  • 22. Veisi, H., Nasrabadi, N.H. ve Mohammadi, P., “Biosynthesis of palladium nanoparticles as a heterogeneous and reusable nanocatalyst for reduction of nitroarenes and Suzuki coupling reactions”, Applied Organometallic Chemistry, Cilt 30, No 11, 890-896, 2016.
  • 23. Li, S., Xu, S., Liu, S., Yang, C. ve Lu, Q., “Fast pyrolysis of biomass in free-fall reactor for hydrogen-rich gas”, Fuel Processing Technology, Cilt 85, No 8, 1201-1211, 2004.
  • 24. Basu, P., Biomass gasification and pyrolysis: practical design and theory, Academic press, 0080961622, Boston, 2010.
  • 25. Parshetti, G.K., Hoekman, S.K. ve Balasubramanian, R., “Chemical, structural and combustion characteristics of carbonaceous products obtained by hydrothermal carbonization of palm empty fruit bunches”, Bioresource technology, Cilt 135, 683-689, 2013.
  • 26. Volpe, M., Goldfarb, J.L. ve Fiori, L., “Hydrothermal carbonization of Opuntia ficus-indica cladodes: Role of process parameters on hydrochar properties”, Bioresource Technology, Cilt 247, 310-318, 2018.
  • 27. Baccile, N., Weber, J., Falco, C. ve Titirici, M.M., “Characterization of Hydrothermal Carbonization Materials”, Sustainable Carbon Materials from Hydrothermal Processes, 151-211, 2013.

Atık lignoselülozik biyokütleden hidrotermal karbon üretimi ve karakterizasyonu

Yıl 2020, Cilt: 35 Sayı: 2, 1063 - 1076, 25.12.2019
https://doi.org/10.17341/gazimmfd.427448

Öz

Bu çalışmada, çevre dostu ve sürdürülebilir
malzemelerin üretimi için lignoselülozik biyokütle olan meşe talaşından
hidrotermal karbonizasyon ile 175, 200 ve 225 °C sıcaklıklarda 12, 24, 48, 60,
72 saat reaksiyon sürelerinde karbon malzemeler elde edilmiştir. Elde edilen
karbon malzemelerin karakterizasyonları Fourier dönüşümlü infrared (FT-IR),
elementel analiz, Brunauer - Emmett - Teller (BET) yüzey alanı ve taramalı
elektron mikroskobu (SEM) analiz teknikleriyle gerçekleştirilmiştir. Hidrotermal
karbonlaşma yöntemiyle elde edilen HTC’lerin kendine özgü özellikleri vardır. İşlemin
düşük sıcaklıkta gerçekleşmesi fonksiyonel grupların yapıda korunmasına olanak
sağlar, oksijenli fonksiyonel gruplar reaktiviteyi artırarak HTC’lerin ileri
düzey modifikasyonu sonucunda işlevselliğini artırır. 

Kaynakça

  • 1. Tekin, K., “Hydrothermal conversion of russian olive seeds into crude bio-oil using a CaO catalyst derived from waste mussel shells”, Energy & Fuels, Cilt 29, No 7, 4382-4392, 2015.
  • 2. Tekin, K., Karagöz, S. ve Bektaş, S., “A review of hydrothermal biomass processing”, Renewable and sustainable Energy reviews, Cilt 40, 673-687, 2014.
  • 3. Jain, A., Tekin, K. ve Srinivasan, M.P., “Mesoporous Adsorbents from Biomass: Opportunities and Challenges in Hydrothermal Treatment”, Air, Gas, and Water Pollution Control Using Industrial and Agricultural Solid Wastes Adsorbents, Editör: Sen, T.K., CRC Press New York, 2017.
  • 4. Hu, B., Wang, K., Wu, L., Yu, S.H., Antonietti, M. ve Titirici, M.M., “Engineering carbon materials from the hydrothermal carbonization process of biomass”, Advanced Materials, Cilt 22, No 7, 813-828, 2010.
  • 5. Marinovic, A., Pileidis, F.D. ve Titirici, M.-M., “Hydrothermal carbonisation (HTC): history, state-of-the-art and chemistry”, Porous Carbon Materials from Sustainable Precursors, No 32, 129, 2015.
  • 6. Kubo, S., Nanostructured carbohydrate-derived carbonaceous materials, University of Potsdam, Faculty of Mathematics and Natural Sciences, 2011.
  • 7. Titirici, M.-M., White, R.J., Falco, C. ve Sevilla, M., “Black perspectives for a green future: hydrothermal carbons for environment protection and energy storage”, Energy & Environmental Science, Cilt 5, No 5, 6796-6822, 2012.
  • 8. Titirici, M.-M. ve Antonietti, M., “Chemistry and materials options of sustainable carbon materials made by hydrothermal carbonization”, Chemical Society Reviews, Cilt 39, No 1, 103-116, 2010.
  • 9. Falco, C., Baccile, N. ve Titirici, M.-M., “Morphological and structural differences between glucose, cellulose and lignocellulosic biomass derived hydrothermal carbons”, Green Chemistry, Cilt 13, No 11, 3273-3281, 2011.
  • 10. Wang, T., Zhai, Y., Zhu, Y., Peng, C., Xu, B., Wang, T., Li, C. ve Zeng, G., “Acetic acid and sodium hydroxide-aided hydrothermal carbonization (HTC) of woody biomass for enhanced pelletization and fuel properties”, Energy & Fuels, 2017.
  • 11. Baccile, N., Laurent, G., Babonneau, F., Fayon, F., Titirici, M.-M. ve Antonietti, M., “Structural characterization of hydrothermal carbon spheres by advanced solid-state MAS 13C NMR investigations”, The Journal of Physical Chemistry C, Cilt 113, No 22, 9644-9654, 2009.
  • 12. Titirici, M.-M., Antonietti, M. ve Baccile, N., “Hydrothermal carbon from biomass: a comparison of the local structure from poly-to monosaccharides and pentoses/hexoses”, Green Chemistry, Cilt 10, No 11, 1204-1212, 2008.
  • 13. Xue, Y., Gao, B., Yao, Y., Inyang, M., Zhang, M., Zimmerman, A.R. ve Ro, K.S., “Hydrogen peroxide modification enhances the ability of biochar (hydrochar) produced from hydrothermal carbonization of peanut hull to remove aqueous heavy metals: batch and column tests”, Chemical Engineering Journal, Cilt 200, 673-680, 2012.
  • 14. Titirici, M.-M., Sustainable carbon materials from hydrothermal processes, John Wiley & Sons, 1118622200, 2013.
  • 15. Liu, W.-J., Jiang, H. ve Yu, H.-Q., “Thermochemical conversion of lignin to functional materials: a review and future directions”, Green Chemistry, Cilt 17, No 11, 4888-4907, 2015.
  • 16. Jain, A., Balasubramanian, R. ve Srinivasan, M., “Hydrothermal conversion of biomass waste to activated carbon with high porosity: A review”, Chemical Engineering Journal, Cilt 283, 789-805, 2016.
  • 17. Sevilla, M. ve Fuertes, A.B., “Chemical and structural properties of carbonaceous products obtained by hydrothermal carbonization of saccharides”, Chemistry-A European Journal, Cilt 15, No 16, 4195-4203, 2009.
  • 18. Sevilla, M. ve Fuertes, A.B., “The production of carbon materials by hydrothermal carbonization of cellulose”, Carbon, Cilt 47, No 9, 2281-2289, 2009.
  • 19. Sevilla, M., Fuertes, A.B. ve Mokaya, R., “High density hydrogen storage in superactivated carbons from hydrothermally carbonized renewable organic materials”, Energy & Environmental Science, Cilt 4, No 4, 1400-1410, 2011.
  • 20. Liu, Z., Quek, A., Hoekman, S.K. ve Balasubramanian, R., “Production of solid biochar fuel from waste biomass by hydrothermal carbonization”, Fuel, Cilt 103, 943-949, 2013.
  • 21. Simsir, H., Eltugral, N. ve Karagoz, S., “Hydrothermal carbonization for the preparation of hydrochars from glucose, cellulose, chitin, chitosan and wood chips via low-temperature and their characterization”, Bioresource Technology, Cilt 246, No Supplement C, 82-87, 2017.
  • 22. Veisi, H., Nasrabadi, N.H. ve Mohammadi, P., “Biosynthesis of palladium nanoparticles as a heterogeneous and reusable nanocatalyst for reduction of nitroarenes and Suzuki coupling reactions”, Applied Organometallic Chemistry, Cilt 30, No 11, 890-896, 2016.
  • 23. Li, S., Xu, S., Liu, S., Yang, C. ve Lu, Q., “Fast pyrolysis of biomass in free-fall reactor for hydrogen-rich gas”, Fuel Processing Technology, Cilt 85, No 8, 1201-1211, 2004.
  • 24. Basu, P., Biomass gasification and pyrolysis: practical design and theory, Academic press, 0080961622, Boston, 2010.
  • 25. Parshetti, G.K., Hoekman, S.K. ve Balasubramanian, R., “Chemical, structural and combustion characteristics of carbonaceous products obtained by hydrothermal carbonization of palm empty fruit bunches”, Bioresource technology, Cilt 135, 683-689, 2013.
  • 26. Volpe, M., Goldfarb, J.L. ve Fiori, L., “Hydrothermal carbonization of Opuntia ficus-indica cladodes: Role of process parameters on hydrochar properties”, Bioresource Technology, Cilt 247, 310-318, 2018.
  • 27. Baccile, N., Weber, J., Falco, C. ve Titirici, M.M., “Characterization of Hydrothermal Carbonization Materials”, Sustainable Carbon Materials from Hydrothermal Processes, 151-211, 2013.
Toplam 27 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Öznur Bağ Bu kişi benim 0000-0002-8532-3516

Kubilay Tekin 0000-0002-9373-3208

Yayımlanma Tarihi 25 Aralık 2019
Gönderilme Tarihi 26 Mayıs 2018
Kabul Tarihi 3 Aralık 2019
Yayımlandığı Sayı Yıl 2020 Cilt: 35 Sayı: 2

Kaynak Göster

APA Bağ, Ö., & Tekin, K. (2019). Atık lignoselülozik biyokütleden hidrotermal karbon üretimi ve karakterizasyonu. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 35(2), 1063-1076. https://doi.org/10.17341/gazimmfd.427448
AMA Bağ Ö, Tekin K. Atık lignoselülozik biyokütleden hidrotermal karbon üretimi ve karakterizasyonu. GUMMFD. Aralık 2019;35(2):1063-1076. doi:10.17341/gazimmfd.427448
Chicago Bağ, Öznur, ve Kubilay Tekin. “Atık lignoselülozik biyokütleden Hidrotermal Karbon üretimi Ve Karakterizasyonu”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 35, sy. 2 (Aralık 2019): 1063-76. https://doi.org/10.17341/gazimmfd.427448.
EndNote Bağ Ö, Tekin K (01 Aralık 2019) Atık lignoselülozik biyokütleden hidrotermal karbon üretimi ve karakterizasyonu. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 35 2 1063–1076.
IEEE Ö. Bağ ve K. Tekin, “Atık lignoselülozik biyokütleden hidrotermal karbon üretimi ve karakterizasyonu”, GUMMFD, c. 35, sy. 2, ss. 1063–1076, 2019, doi: 10.17341/gazimmfd.427448.
ISNAD Bağ, Öznur - Tekin, Kubilay. “Atık lignoselülozik biyokütleden Hidrotermal Karbon üretimi Ve Karakterizasyonu”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 35/2 (Aralık 2019), 1063-1076. https://doi.org/10.17341/gazimmfd.427448.
JAMA Bağ Ö, Tekin K. Atık lignoselülozik biyokütleden hidrotermal karbon üretimi ve karakterizasyonu. GUMMFD. 2019;35:1063–1076.
MLA Bağ, Öznur ve Kubilay Tekin. “Atık lignoselülozik biyokütleden Hidrotermal Karbon üretimi Ve Karakterizasyonu”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, c. 35, sy. 2, 2019, ss. 1063-76, doi:10.17341/gazimmfd.427448.
Vancouver Bağ Ö, Tekin K. Atık lignoselülozik biyokütleden hidrotermal karbon üretimi ve karakterizasyonu. GUMMFD. 2019;35(2):1063-76.