Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2020, Cilt: 35 Sayı: 2, 859 - 870, 25.12.2019
https://doi.org/10.17341/gazimmfd.549084

Öz

Kaynakça

  • Dogu, D. and G. Karakas, Photocatalytic Properties and Characterization of Praseodymium-doped Titanium Dioxide. Journal of Advanced Oxidation Technologies, 21(1), 215-226, 2018.
  • Colmenares, J.C., et al., Synthesis, characterization and photocatalytic activity of different metal-doped titania systems. Applied Catalysis A: General, 306, 120-127, 2006.
  • Köysüren, H.N. and Ö. Köysüren, Polivinil alkol kompozit nanoliflerin hazırlanması ve katı-faz polivinil alkol’ün fotokatalitik bozunması. Gazi Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 33(4), 2018.
  • Rana, S., J. Rawat, and R.D.K. Misra, Anti-microbial active composite nanoparticles with magnetic core and photocatalytic shell: TiO2–NiFe2O4 biomaterial system. Acta Biomaterialia, 1(6), 691-703, 2005.
  • Kolen’ko, Y.V., et al., Photocatalytic properties of titania powders prepared by hydrothermal method. Applied Catalysis B: Environmental, 54(1), 51-58, 2004.
  • Wang, G., Hydrothermal synthesis and photocatalytic activity of nanocrystalline TiO2 powders in ethanol–water mixed solutions. Journal of Molecular Catalysis A: Chemical, 274(1), 185-191, 2007.
  • de Lasa, H., B. Serrano, and M. Salaices, Photocatalytic Reaction Engineering, Springer, 2005.
  • Yu, J., et al., Effects of hydrothermal temperature and time on the photocatalytic activity and microstructures of bimodal mesoporous TiO2 powders. Applied Catalysis B: Environmental, 69(3-4), 171-180, 2007.
  • Linsebigler, A.L., G.Q. Lu, and J.T. Yates, PHOTOCATALYSIS ON TIO2 SURFACES - PRINCIPLES, MECHANISMS, AND SELECTED RESULTS. Chemical Reviews, 95(3), 735-758, 1995.
  • Hidalgo, M.C., et al., Hydrothermal preparation of highly photoactive TiO2 nanoparticles. Catalysis Today, 129(1-2), 50-58, 2007.
  • Sahni, S., S.B. Reddy, and B.S. Murty, Influence of process parameters on the synthesis of nano-titania by sol–gel route. Materials Science and Engineering: A, 452-453, 758-762, 2007.
  • Jing, L., et al., Investigation on the electron transfer between anatase and rutile in nano-sized TiO2 by means of surface photovoltage technique and its effects on the photocatalytic activity. Solar Energy Materials and Solar Cells, 92(9), 1030-1036, 2008.
  • Francisco, M.S.P. and V.R. Mastelaro, Inhibition of the anatase-rutile phase transformation with addition of CeO2 to CuO-TiO2 system: Raman spectroscopy, X-ray diffraction, and textural studies. Chemistry of Materials, 14(6), 2514-2518, 2002.
  • Zhao, L., M. Han, and J. Lian, Photocatalytic activity of TiO2 films with mixed anatase and rutile structures prepared by pulsed laser deposition. Thin Solid Films, 516(10), 3394-3398, 2008.
  • Valencia, S., J.M. Marín, and G. Restrepo, Study of the Bandgap of Synthesized Titanium Dioxide Nanoparticules Using the Sol-Gel Method and a Hydrothermal Treatment. The Open Materials Science Journal, 4, 9-14, 2010.
  • Reddy, K.M., S.V. Manorama, and A.R. Reddy, Bandgap studies on anatase titanium dioxide nanoparticles. Materials Chemistry and Physics, 78, 239-245, 2002.
  • Oliva, F.Y., et al., Photoelectrochemical characterization of nanocrystalline TiO2 films on titanium substrates. Journal of Photochemistry and Photobiology a-Chemistry, 146(3), 175-188, 2002.
  • Hanaor, D.A.H. and C.C. Sorrell, Review of the anatase to rutile phase transformation. Journal of Materials Science, 46(4), 855-874, 2010.
  • Gupta, S.M. and M. Tripathi, A review of TiO2 nanoparticles. Chinese Science Bulletin, 56(16), 1639-1657, 2011.
  • Zhu, J., et al., Nanocrystalline anatase TiO2 photocatalysts prepared via a facile low temperature nonhydrolytic sol–gel reaction of TiCl4 and benzyl alcohol. Applied Catalysis B: Environmental, 76(1-2), 82-91, 2007.
  • Karakitsou, K.E. and X.E. Verykios, EFFECTS OF ALTERVALENT CATION DOPING OF TIO2 ON ITS PERFORMANCE AS A PHOTOCATALYST FOR WATER CLEAVAGE. Journal of Physical Chemistry, 97(6), 1184-1189, 1993.
  • Su, C., et al., Sol–hydrothermal preparation and photocatalysis of titanium dioxide. Thin Solid Films, 498(1-2), 259-265, 2006.
  • Kusiak-Nejman, E., et al., Modification of Titanium Dioxide with Graphitic Carbon from Anthracene Thermal Decomposition as a Promising Method for Visible- Active Photocatalysts Preparation, in Journal of Advanced Oxidation Technologies. 2016. p. 227.
  • Alemany Luis, J., et al., Photodegradation of Phenol in Water using Silica-Supported Titania Catalysts, in Journal of Advanced Oxidation Technologies. 1998. p. 155.
  • Hirano, K., et al., Sensitization of TiO2 particles by dyes to achieve H2 evolution by visible light. Journal of Photochemistry and Photobiology a-Chemistry, 136, 157-161, 2000.
  • O'Regan, B. and M. Gratzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature, 353, 737-740, 1991.
  • Grätzel, M., Dye-sensitized solar cells. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 4(2), 145-153, 2003.
  • Papp, J., et al., Titanium(IV) Oxide Photocatalysts with Palladium. Chemistry of Materials, 5, 284-288, 1993.
  • Rupa, A.V., D. Divakar, and T. Sivakumar, Titania and Noble Metals Deposited Titania Catalysts in the Photodegradation of Tartazine. Catalysis Letters, 132(1-2), 259-267, 2009.
  • Liu, S.X., et al., A mechanism for enhanced photocatalytic activity of silver-loaded titanium dioxide. Catalysis Today, 93-95, 877-884, 2004.
  • Jin, S. and F. Shiraishi, Photocatalytic activities enhanced for decompositions of organic compounds over metal-photodepositing titanium dioxide. Chemical Engineering Journal, 97(2-3), 203-211, 2004.
  • Wang, C., et al., Photocatalytic performance of Gd ion modified titania porous hollow spheres under visible light. Materials Letters, 64(8), 1003-1006, 2010.
  • Xin, B., et al., Study on the mechanisms of photoinduced carriers separation and recombination for Fe3+–TiO2 photocatalysts. Applied Surface Science, 253(9), 4390-4395, 2007.
  • Khan, M.A., D.H. Han, and O.B. Yang, Enhanced photoresponse towards visible light in Ru doped titania nanotube. Applied Surface Science, 255(6), 3687-3690, 2009.
  • El-Bahy, Z.M., A.A. Ismail, and R.M. Mohamed, Enhancement of titania by doping rare earth for photodegradation of organic dye (Direct Blue). Journal of Hazardous Materials, 166(1), 138-143, 2009.
  • Wang, C., et al., Preparation, characterization, photocatalytic properties of titania hollow sphere doped with cerium. Journal of Hazardous Materials, 178(1-3), 517-521, 2010.
  • Choi, W., A. Termin, and M.R. Hoffmann, The Role of Metal Ion Dopants in Quantum-Sized TiO2: Correlation between Photoreactivity and Charge Carrier Recombination Dynamics. Journal of Physical Chemistry, 98, 13669-13679, 1994.
  • Xu, A.-W., Y. Gao, and H.-Q. Liu, The Preparation, Characterization, and their Photocatalytic Activities of Rare-Earth-Doped TiO2 Nanoparticles. Journal of Catalysis, 207(2), 151-157, 2002.
  • Wu, C.-G., C.-C. Chao, and F.-T. Kuo, Enhancement of the photo catalytic performance of TiO2 catalysts via transition metal modification. Catalysis Today, 97(2-3), 103-112, 2004.
  • Araña, J., et al., Gas-phase ethanol photocatalytic degradation study with TiO2 doped with Fe, Pd and Cu. Journal of Molecular Catalysis A: Chemical, 215(1-2), 153-160, 2004.
  • Ortiz-Gomez, A., B. Serrano-Rosales, and H. de Lasa, Enhanced mineralization of phenol and other hydroxylated compounds in a photocatalytic process assisted with ferric ions. Chemical Engineering Science, 63(2), 520-557, 2008.
  • Asahi, R., et al., Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides. Science, 293, 269-271, 2001.
  • Yu, J.C., et al., Effects of F- Doping on the Photocatalytic Activity and Microstructures of Nanocrystalline TiO2 Powders. Chemistry of Materials, 14, 3808-3816, 2002.
  • Park, J.H., S. Kim, and A.J. Bard, Novel Carbon-Doped TiO2 Nanotube Arrays with High Aspect Ratios for Efficient Solar Water Splitting. Nano Letters, 6, 24-28, 2006.
  • Yang, K.S., et al., Research on up-conversion mechanism in Er3+/Yb3+-codoped oxyfluoride glass. Journal of Rare Earths, 24, 175-178, 2006.
  • Su, W., et al., Visible light photocatalysis on praseodymium(III)-nitrate-modified TiO2 prepared by an ultrasound method. Applied Catalysis B: Environmental, 77(3-4), 264-271, 2008.
  • Amlouk, A., et al., Luminescence of TiO2:Pr nanoparticles incorporated in silica aerogel. Materials Science and Engineering: B, 146(1-3), 74-79, 2008.
  • Yang, J., J. Dai, and J. Li, Synthesis, characterization and degradation of Bisphenol A using Pr, N co-doped TiO2 with highly visible light activity. Applied Surface Science, 257(21), 8965-8973, 2011.
  • Ranjit, K.T., et al., Lanthanide oxide-doped titanium dioxide photocatalysts: Novel photocatalysts for the enhanced degradation of p-chlorophenoxyacetic acid. Environmental Science & Technology, 35(7), 1544-1549, 2001.
  • Chiou, C.-H. and R.-S. Juang, Photocatalytic degradation of phenol in aqueous solutions by Pr-doped TiO2 nanoparticles. Journal of Hazardous Materials, 149(1), 1-7, 2007.
  • Duan, Z.-G., Zhao, Zong-Yan, and Q.-N. Shi, Modification mechanism of praseodymium doping for the photocatalytic performance of TiO2: a combined experimental and theoretical study. Physical Chemistry Chemical Physics, 17, 19087-19095, 2015.
  • Jang, H., et al., Dual-Wavelength Irradiation and Dox Delivery for ­Cancer Cell Ablation with Photocatalytic Pr Doped TiO2/NGO ­Hybrid Nanocomposite. Advanced Healthcare Materials, 4(12), 1833-1840, 2015.
  • Jiang, H., et al., Hydrothermal synthesis of high-efficiency Pr, N, P-tridoped TiO2 from TiCl4 hydrolysis and mechanism of its enhanced photoactivity. Journal of Alloys and Compounds, 600, 34-42, 2014.
  • Liu, X., et al., Preparation and characterization of visible light-driven praseodymium-doped mesoporous titania coated magnetite photocatalyst. Indian Journal of Chemistry, 52A, 1257-1262, 2013.
  • Reszczynska, J., et al., Pr-doped TiO2. The effect of metal content on photocatalytic activity. Physicochemical Problems of Mineral Processing, 50(2), 515-524, 2014.
  • Sui, G., et al., Preparation and photocatalytic performance of a Pr–SiO<SUB>2</SUB>–TiO<SUB>2</SUB> nanocomposite for degradation of aqueous dye wastewater. Materials Express, 6(1), 1-9, 2016.
  • Zhou, F., et al., TiO2/Sepiolite nanocomposites doped with rare earth ions: Preparation, characterization and visible light photocatalytic activity. Microporous and Mesoporous Materials, 274, 25-32, 2019.
  • Zhou, F., et al., Fabrication and characterization of TiO 2 /Sepiolite nanocomposites doped with rare earth ions. Materials Letters, 228, 100-103, 2018.
  • Bhethanabotla, V.C., D.R. Russell, and J.N. Kuhn, Assessment of mechanisms for enhanced performance of Yb/Er/titania photocatalysts for organic degradation: Role of rare earth elements in the titania phase. Applied Catalysis B: Environmental, 202, 156-164, 2017.
  • Dong, Y., et al., Hot Electrons Generated from Doped Quantum Dots via Upconversion of Excitons to Hot Charge Carriers for Enhanced Photocatalysis. Journal of the American Chemical Society, 137(16), 5549-5554, 2015.
  • Kim, H.-i., et al., Plasmon-Enhanced Sub-Bandgap Photocatalysis via Triplet–Triplet Annihilation Upconversion for Volatile Organic Compound Degradation. Environmental Science & Technology, 50(20), 11184-11192, 2016.
  • Pickering, J.W., V.R. Bhethanabotla, and J.N. Kuhn, Assessment of mechanisms for enhanced performance of TiO2/YAG:Yb+3,Er+3 composite photocatalysts for organic degradation. Applied Catalysis B: Environmental, 202, 147-155, 2017.
  • Shi, J., et al., Site-Selected Doping of Upconversion Luminescent Er3+into SrTiO3for Visible-Light-Driven Photocatalytic H2or O2Evolution. Chemistry - A European Journal, 18(24), 7543-7551, 2012.
  • Tymiński, A. and T. Grzyb, Are rare earth phosphates suitable as hosts for upconversion luminescence? Studies on nanocrystalline REPO4 (RE=Y, La, Gd, Lu) doped with Yb3+ and Eu3+, Tb3+, Ho3+, Er3+ or Tm3+ ions. Journal of Luminescence, 181, 411-420, 2017.
  • Du, P., et al., Citric-assisted sol-gel based Er3+/Yb3+-codoped Na0.5Gd0.5MoO4: A novel highly-efficient infrared-to-visible upconversion material for optical temperature sensors and optical heaters. Chemical Engineering Journal, 306, 840-848, 2016.
  • Xu, Z., et al., Harvesting Lost Photons: Plasmon and Upconversion Enhanced Broadband Photocatalytic Activity in Core@Shell Microspheres Based on Lanthanide-Doped NaYF4, TiO2, and Au. Advanced Functional Materials, 25(20), 2950-2960, 2015.
  • Jockusch, S., N.J. Turro, and D.A. Tomalia, Aggregation of Methylene Blue Adsorbed on Starburst Dendrimers. Macromolecules, 28(22), 7416-7418, 1995.
  • Murugan, K., et al., Effect of aggregation of methylene blue dye on TiO2 surface in self-cleaning studies. Catalysis Communications, 11(6), 518-521, 2010.

Praseodymium katkılı titanyum dioksit fotokatalizörünün metilen mavisinin bozunma reaksiyonundaki etkinliği

Yıl 2020, Cilt: 35 Sayı: 2, 859 - 870, 25.12.2019
https://doi.org/10.17341/gazimmfd.549084

Öz

Bu çalışmada, sol-gel yöntemiyle hazırlanmış olan
titanium dioksit esaslı katalizörlere praseodymium (Pr) katkılanmasının ve
kalsinasyon sıcaklığının metilen mavisinin fotokatalitik bozunma
reaksiyonundaki etkileri araştırılmıştır. Titanyum dioksitin %1 oranında Pr
katkılanması anataz kristallerinin rutil yapısına dönüşmesini engelleyerek daha
kararlı bir anataz yapısının oluşmasını sağlamakta, yüzey alanını ve
fotokatalizörün ışık absorpsiyon kapasitesini artırmaktadır
[1]. Metilen
mavisinin fotokatalitik bozunma reaksiyonunda Pr katkılanmasının yanısıra katalizörün
kalsinasyon sıcaklığının etkisi hem toz hem ince film katalizorler uzerinde etüd
edilmiştir. Deneysel sonuçlar, 600 °C’da kalsine edilen katalizörlerin 500 °C’da
kalsine edilen numunelere göre daha yüksek fotokatalitik aktiviteye sahip
olduklarını göstermiştir. Ayrica, Pr katkılanması toz halindeki TiO2
katalizörlerin fotokatalitik performansını iyileştirmiş olup metilen mavisinin
tam dönüşmesini sağlamıştır.  Metilen
mavisi moleküllerinin dimerizasyonu da bozunma reaksiyon hızını etkilemekte olup
Pr katkilanmis numunelerde dimerlerin monomere dönüşümünün daha hızlı
gercekleştigi görülmüşür.

Kaynakça

  • Dogu, D. and G. Karakas, Photocatalytic Properties and Characterization of Praseodymium-doped Titanium Dioxide. Journal of Advanced Oxidation Technologies, 21(1), 215-226, 2018.
  • Colmenares, J.C., et al., Synthesis, characterization and photocatalytic activity of different metal-doped titania systems. Applied Catalysis A: General, 306, 120-127, 2006.
  • Köysüren, H.N. and Ö. Köysüren, Polivinil alkol kompozit nanoliflerin hazırlanması ve katı-faz polivinil alkol’ün fotokatalitik bozunması. Gazi Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 33(4), 2018.
  • Rana, S., J. Rawat, and R.D.K. Misra, Anti-microbial active composite nanoparticles with magnetic core and photocatalytic shell: TiO2–NiFe2O4 biomaterial system. Acta Biomaterialia, 1(6), 691-703, 2005.
  • Kolen’ko, Y.V., et al., Photocatalytic properties of titania powders prepared by hydrothermal method. Applied Catalysis B: Environmental, 54(1), 51-58, 2004.
  • Wang, G., Hydrothermal synthesis and photocatalytic activity of nanocrystalline TiO2 powders in ethanol–water mixed solutions. Journal of Molecular Catalysis A: Chemical, 274(1), 185-191, 2007.
  • de Lasa, H., B. Serrano, and M. Salaices, Photocatalytic Reaction Engineering, Springer, 2005.
  • Yu, J., et al., Effects of hydrothermal temperature and time on the photocatalytic activity and microstructures of bimodal mesoporous TiO2 powders. Applied Catalysis B: Environmental, 69(3-4), 171-180, 2007.
  • Linsebigler, A.L., G.Q. Lu, and J.T. Yates, PHOTOCATALYSIS ON TIO2 SURFACES - PRINCIPLES, MECHANISMS, AND SELECTED RESULTS. Chemical Reviews, 95(3), 735-758, 1995.
  • Hidalgo, M.C., et al., Hydrothermal preparation of highly photoactive TiO2 nanoparticles. Catalysis Today, 129(1-2), 50-58, 2007.
  • Sahni, S., S.B. Reddy, and B.S. Murty, Influence of process parameters on the synthesis of nano-titania by sol–gel route. Materials Science and Engineering: A, 452-453, 758-762, 2007.
  • Jing, L., et al., Investigation on the electron transfer between anatase and rutile in nano-sized TiO2 by means of surface photovoltage technique and its effects on the photocatalytic activity. Solar Energy Materials and Solar Cells, 92(9), 1030-1036, 2008.
  • Francisco, M.S.P. and V.R. Mastelaro, Inhibition of the anatase-rutile phase transformation with addition of CeO2 to CuO-TiO2 system: Raman spectroscopy, X-ray diffraction, and textural studies. Chemistry of Materials, 14(6), 2514-2518, 2002.
  • Zhao, L., M. Han, and J. Lian, Photocatalytic activity of TiO2 films with mixed anatase and rutile structures prepared by pulsed laser deposition. Thin Solid Films, 516(10), 3394-3398, 2008.
  • Valencia, S., J.M. Marín, and G. Restrepo, Study of the Bandgap of Synthesized Titanium Dioxide Nanoparticules Using the Sol-Gel Method and a Hydrothermal Treatment. The Open Materials Science Journal, 4, 9-14, 2010.
  • Reddy, K.M., S.V. Manorama, and A.R. Reddy, Bandgap studies on anatase titanium dioxide nanoparticles. Materials Chemistry and Physics, 78, 239-245, 2002.
  • Oliva, F.Y., et al., Photoelectrochemical characterization of nanocrystalline TiO2 films on titanium substrates. Journal of Photochemistry and Photobiology a-Chemistry, 146(3), 175-188, 2002.
  • Hanaor, D.A.H. and C.C. Sorrell, Review of the anatase to rutile phase transformation. Journal of Materials Science, 46(4), 855-874, 2010.
  • Gupta, S.M. and M. Tripathi, A review of TiO2 nanoparticles. Chinese Science Bulletin, 56(16), 1639-1657, 2011.
  • Zhu, J., et al., Nanocrystalline anatase TiO2 photocatalysts prepared via a facile low temperature nonhydrolytic sol–gel reaction of TiCl4 and benzyl alcohol. Applied Catalysis B: Environmental, 76(1-2), 82-91, 2007.
  • Karakitsou, K.E. and X.E. Verykios, EFFECTS OF ALTERVALENT CATION DOPING OF TIO2 ON ITS PERFORMANCE AS A PHOTOCATALYST FOR WATER CLEAVAGE. Journal of Physical Chemistry, 97(6), 1184-1189, 1993.
  • Su, C., et al., Sol–hydrothermal preparation and photocatalysis of titanium dioxide. Thin Solid Films, 498(1-2), 259-265, 2006.
  • Kusiak-Nejman, E., et al., Modification of Titanium Dioxide with Graphitic Carbon from Anthracene Thermal Decomposition as a Promising Method for Visible- Active Photocatalysts Preparation, in Journal of Advanced Oxidation Technologies. 2016. p. 227.
  • Alemany Luis, J., et al., Photodegradation of Phenol in Water using Silica-Supported Titania Catalysts, in Journal of Advanced Oxidation Technologies. 1998. p. 155.
  • Hirano, K., et al., Sensitization of TiO2 particles by dyes to achieve H2 evolution by visible light. Journal of Photochemistry and Photobiology a-Chemistry, 136, 157-161, 2000.
  • O'Regan, B. and M. Gratzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature, 353, 737-740, 1991.
  • Grätzel, M., Dye-sensitized solar cells. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 4(2), 145-153, 2003.
  • Papp, J., et al., Titanium(IV) Oxide Photocatalysts with Palladium. Chemistry of Materials, 5, 284-288, 1993.
  • Rupa, A.V., D. Divakar, and T. Sivakumar, Titania and Noble Metals Deposited Titania Catalysts in the Photodegradation of Tartazine. Catalysis Letters, 132(1-2), 259-267, 2009.
  • Liu, S.X., et al., A mechanism for enhanced photocatalytic activity of silver-loaded titanium dioxide. Catalysis Today, 93-95, 877-884, 2004.
  • Jin, S. and F. Shiraishi, Photocatalytic activities enhanced for decompositions of organic compounds over metal-photodepositing titanium dioxide. Chemical Engineering Journal, 97(2-3), 203-211, 2004.
  • Wang, C., et al., Photocatalytic performance of Gd ion modified titania porous hollow spheres under visible light. Materials Letters, 64(8), 1003-1006, 2010.
  • Xin, B., et al., Study on the mechanisms of photoinduced carriers separation and recombination for Fe3+–TiO2 photocatalysts. Applied Surface Science, 253(9), 4390-4395, 2007.
  • Khan, M.A., D.H. Han, and O.B. Yang, Enhanced photoresponse towards visible light in Ru doped titania nanotube. Applied Surface Science, 255(6), 3687-3690, 2009.
  • El-Bahy, Z.M., A.A. Ismail, and R.M. Mohamed, Enhancement of titania by doping rare earth for photodegradation of organic dye (Direct Blue). Journal of Hazardous Materials, 166(1), 138-143, 2009.
  • Wang, C., et al., Preparation, characterization, photocatalytic properties of titania hollow sphere doped with cerium. Journal of Hazardous Materials, 178(1-3), 517-521, 2010.
  • Choi, W., A. Termin, and M.R. Hoffmann, The Role of Metal Ion Dopants in Quantum-Sized TiO2: Correlation between Photoreactivity and Charge Carrier Recombination Dynamics. Journal of Physical Chemistry, 98, 13669-13679, 1994.
  • Xu, A.-W., Y. Gao, and H.-Q. Liu, The Preparation, Characterization, and their Photocatalytic Activities of Rare-Earth-Doped TiO2 Nanoparticles. Journal of Catalysis, 207(2), 151-157, 2002.
  • Wu, C.-G., C.-C. Chao, and F.-T. Kuo, Enhancement of the photo catalytic performance of TiO2 catalysts via transition metal modification. Catalysis Today, 97(2-3), 103-112, 2004.
  • Araña, J., et al., Gas-phase ethanol photocatalytic degradation study with TiO2 doped with Fe, Pd and Cu. Journal of Molecular Catalysis A: Chemical, 215(1-2), 153-160, 2004.
  • Ortiz-Gomez, A., B. Serrano-Rosales, and H. de Lasa, Enhanced mineralization of phenol and other hydroxylated compounds in a photocatalytic process assisted with ferric ions. Chemical Engineering Science, 63(2), 520-557, 2008.
  • Asahi, R., et al., Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides. Science, 293, 269-271, 2001.
  • Yu, J.C., et al., Effects of F- Doping on the Photocatalytic Activity and Microstructures of Nanocrystalline TiO2 Powders. Chemistry of Materials, 14, 3808-3816, 2002.
  • Park, J.H., S. Kim, and A.J. Bard, Novel Carbon-Doped TiO2 Nanotube Arrays with High Aspect Ratios for Efficient Solar Water Splitting. Nano Letters, 6, 24-28, 2006.
  • Yang, K.S., et al., Research on up-conversion mechanism in Er3+/Yb3+-codoped oxyfluoride glass. Journal of Rare Earths, 24, 175-178, 2006.
  • Su, W., et al., Visible light photocatalysis on praseodymium(III)-nitrate-modified TiO2 prepared by an ultrasound method. Applied Catalysis B: Environmental, 77(3-4), 264-271, 2008.
  • Amlouk, A., et al., Luminescence of TiO2:Pr nanoparticles incorporated in silica aerogel. Materials Science and Engineering: B, 146(1-3), 74-79, 2008.
  • Yang, J., J. Dai, and J. Li, Synthesis, characterization and degradation of Bisphenol A using Pr, N co-doped TiO2 with highly visible light activity. Applied Surface Science, 257(21), 8965-8973, 2011.
  • Ranjit, K.T., et al., Lanthanide oxide-doped titanium dioxide photocatalysts: Novel photocatalysts for the enhanced degradation of p-chlorophenoxyacetic acid. Environmental Science & Technology, 35(7), 1544-1549, 2001.
  • Chiou, C.-H. and R.-S. Juang, Photocatalytic degradation of phenol in aqueous solutions by Pr-doped TiO2 nanoparticles. Journal of Hazardous Materials, 149(1), 1-7, 2007.
  • Duan, Z.-G., Zhao, Zong-Yan, and Q.-N. Shi, Modification mechanism of praseodymium doping for the photocatalytic performance of TiO2: a combined experimental and theoretical study. Physical Chemistry Chemical Physics, 17, 19087-19095, 2015.
  • Jang, H., et al., Dual-Wavelength Irradiation and Dox Delivery for ­Cancer Cell Ablation with Photocatalytic Pr Doped TiO2/NGO ­Hybrid Nanocomposite. Advanced Healthcare Materials, 4(12), 1833-1840, 2015.
  • Jiang, H., et al., Hydrothermal synthesis of high-efficiency Pr, N, P-tridoped TiO2 from TiCl4 hydrolysis and mechanism of its enhanced photoactivity. Journal of Alloys and Compounds, 600, 34-42, 2014.
  • Liu, X., et al., Preparation and characterization of visible light-driven praseodymium-doped mesoporous titania coated magnetite photocatalyst. Indian Journal of Chemistry, 52A, 1257-1262, 2013.
  • Reszczynska, J., et al., Pr-doped TiO2. The effect of metal content on photocatalytic activity. Physicochemical Problems of Mineral Processing, 50(2), 515-524, 2014.
  • Sui, G., et al., Preparation and photocatalytic performance of a Pr–SiO<SUB>2</SUB>–TiO<SUB>2</SUB> nanocomposite for degradation of aqueous dye wastewater. Materials Express, 6(1), 1-9, 2016.
  • Zhou, F., et al., TiO2/Sepiolite nanocomposites doped with rare earth ions: Preparation, characterization and visible light photocatalytic activity. Microporous and Mesoporous Materials, 274, 25-32, 2019.
  • Zhou, F., et al., Fabrication and characterization of TiO 2 /Sepiolite nanocomposites doped with rare earth ions. Materials Letters, 228, 100-103, 2018.
  • Bhethanabotla, V.C., D.R. Russell, and J.N. Kuhn, Assessment of mechanisms for enhanced performance of Yb/Er/titania photocatalysts for organic degradation: Role of rare earth elements in the titania phase. Applied Catalysis B: Environmental, 202, 156-164, 2017.
  • Dong, Y., et al., Hot Electrons Generated from Doped Quantum Dots via Upconversion of Excitons to Hot Charge Carriers for Enhanced Photocatalysis. Journal of the American Chemical Society, 137(16), 5549-5554, 2015.
  • Kim, H.-i., et al., Plasmon-Enhanced Sub-Bandgap Photocatalysis via Triplet–Triplet Annihilation Upconversion for Volatile Organic Compound Degradation. Environmental Science & Technology, 50(20), 11184-11192, 2016.
  • Pickering, J.W., V.R. Bhethanabotla, and J.N. Kuhn, Assessment of mechanisms for enhanced performance of TiO2/YAG:Yb+3,Er+3 composite photocatalysts for organic degradation. Applied Catalysis B: Environmental, 202, 147-155, 2017.
  • Shi, J., et al., Site-Selected Doping of Upconversion Luminescent Er3+into SrTiO3for Visible-Light-Driven Photocatalytic H2or O2Evolution. Chemistry - A European Journal, 18(24), 7543-7551, 2012.
  • Tymiński, A. and T. Grzyb, Are rare earth phosphates suitable as hosts for upconversion luminescence? Studies on nanocrystalline REPO4 (RE=Y, La, Gd, Lu) doped with Yb3+ and Eu3+, Tb3+, Ho3+, Er3+ or Tm3+ ions. Journal of Luminescence, 181, 411-420, 2017.
  • Du, P., et al., Citric-assisted sol-gel based Er3+/Yb3+-codoped Na0.5Gd0.5MoO4: A novel highly-efficient infrared-to-visible upconversion material for optical temperature sensors and optical heaters. Chemical Engineering Journal, 306, 840-848, 2016.
  • Xu, Z., et al., Harvesting Lost Photons: Plasmon and Upconversion Enhanced Broadband Photocatalytic Activity in Core@Shell Microspheres Based on Lanthanide-Doped NaYF4, TiO2, and Au. Advanced Functional Materials, 25(20), 2950-2960, 2015.
  • Jockusch, S., N.J. Turro, and D.A. Tomalia, Aggregation of Methylene Blue Adsorbed on Starburst Dendrimers. Macromolecules, 28(22), 7416-7418, 1995.
  • Murugan, K., et al., Effect of aggregation of methylene blue dye on TiO2 surface in self-cleaning studies. Catalysis Communications, 11(6), 518-521, 2010.
Toplam 68 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Doruk Doğu 0000-0002-3582-7564

Gürkan Karakaş 0000-0002-6423-4215

Yayımlanma Tarihi 25 Aralık 2019
Gönderilme Tarihi 4 Nisan 2019
Kabul Tarihi 28 Mayıs 2019
Yayımlandığı Sayı Yıl 2020 Cilt: 35 Sayı: 2

Kaynak Göster

APA Doğu, D., & Karakaş, G. (2019). Praseodymium katkılı titanyum dioksit fotokatalizörünün metilen mavisinin bozunma reaksiyonundaki etkinliği. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 35(2), 859-870. https://doi.org/10.17341/gazimmfd.549084
AMA Doğu D, Karakaş G. Praseodymium katkılı titanyum dioksit fotokatalizörünün metilen mavisinin bozunma reaksiyonundaki etkinliği. GUMMFD. Aralık 2019;35(2):859-870. doi:10.17341/gazimmfd.549084
Chicago Doğu, Doruk, ve Gürkan Karakaş. “Praseodymium katkılı Titanyum Dioksit fotokatalizörünün Metilen Mavisinin Bozunma Reaksiyonundaki etkinliği”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 35, sy. 2 (Aralık 2019): 859-70. https://doi.org/10.17341/gazimmfd.549084.
EndNote Doğu D, Karakaş G (01 Aralık 2019) Praseodymium katkılı titanyum dioksit fotokatalizörünün metilen mavisinin bozunma reaksiyonundaki etkinliği. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 35 2 859–870.
IEEE D. Doğu ve G. Karakaş, “Praseodymium katkılı titanyum dioksit fotokatalizörünün metilen mavisinin bozunma reaksiyonundaki etkinliği”, GUMMFD, c. 35, sy. 2, ss. 859–870, 2019, doi: 10.17341/gazimmfd.549084.
ISNAD Doğu, Doruk - Karakaş, Gürkan. “Praseodymium katkılı Titanyum Dioksit fotokatalizörünün Metilen Mavisinin Bozunma Reaksiyonundaki etkinliği”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 35/2 (Aralık 2019), 859-870. https://doi.org/10.17341/gazimmfd.549084.
JAMA Doğu D, Karakaş G. Praseodymium katkılı titanyum dioksit fotokatalizörünün metilen mavisinin bozunma reaksiyonundaki etkinliği. GUMMFD. 2019;35:859–870.
MLA Doğu, Doruk ve Gürkan Karakaş. “Praseodymium katkılı Titanyum Dioksit fotokatalizörünün Metilen Mavisinin Bozunma Reaksiyonundaki etkinliği”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, c. 35, sy. 2, 2019, ss. 859-70, doi:10.17341/gazimmfd.549084.
Vancouver Doğu D, Karakaş G. Praseodymium katkılı titanyum dioksit fotokatalizörünün metilen mavisinin bozunma reaksiyonundaki etkinliği. GUMMFD. 2019;35(2):859-70.