Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2020, Cilt: 35 Sayı: 4, 2061 - 2074, 21.07.2020
https://doi.org/10.17341/gazimmfd.563263

Öz

Kaynakça

  • Nusselt W., Die theorie des winderhitzers, Zeitschrift Verein Deutscher Ingenieure, 71, 85-91, 1927.
  • Hausen H., Über die theorie des wärmeaustausches in regeneratoren, Zeitschrift Angewandte Math.Mech., 9, 173-200, 1929.
  • Schumann T.E.W., A liquid flowing through a porous prism, Heat Transfer, J.Franklin Inst., 405-416, 1929.
  • Willmott A.J., Hichliffe C., The effect of gas heat storage upon the performance of the thermal regenerator, Int. Journal of Heat Mass Transfer, 19, 821-826, 1976.
  • Romie F.E., Periodic thermal storage: The regenerator, Journal of Heat Transfer, Transactions of ASME, 101, 726-731, 1979.
  • Atthey D.R., An approximate thermal analysis for a regenerative heat exchanger, Int. Journal of Heat Mass Transfer, 31(7), 1431-1441, 1988.
  • Romie F.E., Transient response of rotary regenerators, Journal of Heat Transfer, Transactions of ASME, 110, 836-840, 1988.
  • Skiepko T., The effect of matrix longitudinal heat conduction on the temperature fields in the rotary heat exchanger, Int. Journal of Heat Mass Transfer, 31(11), 2227-2238, 1988.
  • Worsϕe-Schmidt P., Effect of fresh air purging on the efficiency of energy recovery from exhaust air in rotary regenerators, Int. Journal of Refrigeration, 14, 233-239, 1991.
  • Shah R.K., Skiepko T., Influence of leakage distribution on the thermal performance of a rotary regenerator, Applied Thermal Engineering, 19, 685-705, 1999.
  • Büyükalaca O., Yılmaz T., Influence of rotational speed on effectiveness of rotary-type heat exchangers, Heat and Mass Transfer, 38, 441-447, 2002.
  • Ghodsipour N., Sadrameli M., Experimental and sensitivity analysis of a rotary air preheater for the flue gas heat recovery, Applied Thermal Engineering, 23, 571–580, 2003.
  • Sanaye S., Jafari S., Ghaebi H., Optimum operational conditions of a rotary regenerator using genetic algorithm, Energy and Buildings, 40, 1637–1642, 2008.
  • Seo J.W., Lee D.Y, Kim D.S., A simple effectiveness model for heat wheels, International Journal of Heat and Mass Transfer, 120, 1358–1364, 2018.
  • Akbari A., Kouravand S., Chegini G., Experimental analysis of a rotary heat exchanger for waste heat recovery from the exhaust gas of dryer, Applied Thermal Engineering, 138, 668–674, 2018.
  • Edis E., Kuş H., Determination of hygrothermal performance of building envelope by computer simulation, Journal of the Faculty of Engineering and Architecture of Gazi University, 29(2), 311-320, 2014.
  • Ünal Ş., Erdinç M.T., Kutlu Ç., Thermodynamic analysis of a refrigeration system with double evaporators and ejector, Journal of the Faculty of Engineering and Architecture of Gazi University, 31(4), 1039-1047, 2016.
  • Cihan E., Kavasoğulları B., Demir H., The design and performance improvement of liquid desiccant dehumidification system, Journal of the Faculty of Engineering and Architecture of Gazi University, 32(3), 709-717, 2017.
  • Banks P.J., Prediction of heat and mass regenerator performance using nonlinear analogy method: Part 1- Basis, Journal of Heat Transfer, Transactions of ASME, 107, 222-229, 1985.
  • Aly S.E., Fathalah K.A., Waste heat driven radially cooled rotary dehumidifier (RCRD), Energy Conversion and Management, 35(10), 887-907, 1994.
  • Sphaier L.A., Worek W.M., Analysis of heat and mass transfer in porous sorbents used in rotary regenerators, International Journal of Heat and Mass Transfer, 47, 3415–3430, 2004.
  • Yamaguchi S., Saito K., Numerical and experimental performance analysis of rotary desiccant wheels, International Journal of Heat and Mass Transfer, 60, 51–60, 2013.
  • Kang H., Lee G., Lee D.Y., Explicit analytic solution for heat and mass transfer in a desiccant wheel using a simplified model, Energy, 93,2559-2567, 2015.
  • Chung H.J., Lee J.S., Changhyun Baek, Hoon Kang, Yongchan Kim, Numerical analysis of the performance characteristics and optimal design of a plastic rotary regenerator considering leakage and adsorption, Applied Thermal Engineering, 109, 227–237, 2016.
  • Mandegari M.A., Farzad S., Angrisani G., Pahlavanzadeh H., Study of purge angle effects on the desiccant wheel performance, Energy Conversion and Management, 137, 12–20, 2017.
  • O’Connor D., Calautit J.K., Hughes B.R., A novel design of a rotary desiccant system for reduced dehumidification regeneration air temperature, Energy Procedia, 142, 253-258, 2017.
  • Holmberg R.B., Combined heat and mass transfer in regenerators with hygroscopic materials, Journal of Heat Transfer, Transactions of ASME, 101, 205-210, 1979.
  • Li C.H., A numerical finite difference method for performance evaluation of a periodic-flow heat exchanger, Journal of Heat Transfer, Transactions of ASME, 105, 611-617, 1983.
  • Mioralli P.C., Ganzarolli M.M., Thermal analysis of a rotary regenerator with fixed pressure drop or fixed pumping power, Applied Thermal Engineering, 52, 187-197, 2013.
  • Kaydan A.H., Hajidavalloo E., Three-dimensional simulation of rotary air preheater in steam power plant, Applied Thermal Engineering, 73, 399-407, 2014.
  • Alhusseny A., Turan A., An effective engineering computational procedure to analyze and design rotary regenerators using a porous media approach, International Journal of Heat and Mass Transfer, 95, 593–605, 2016.
  • Özdemir K., Serincan M.F., A computational fluid dynamics model of a rotary regenerative heat exchanger in a flue gas desulfurization system, Applied Thermal Engineering, 143, 988–1002, 2018.
  • Ünal Ş., Numerical calculation of the effectiveness of rotary regenerators, PhD Thesis, Çukurova University, Institute of Natural and Applied Sciences Department of Mechanical Engineering, Adana, 1996.
  • Büyükalaca O., Doğruyol E., The influence of the rotation speed of a rotary regenerator on performance, Tr. J. of Engineering and Environmental Science, 22, 315-322, 1998.

Döner tip rejeneratör diferansiyel denklemlerinin çözümü için en uygun sınır şartlarının belirlenmesi

Yıl 2020, Cilt: 35 Sayı: 4, 2061 - 2074, 21.07.2020
https://doi.org/10.17341/gazimmfd.563263

Öz



Döner tip rejeneratörler, atık ısıdan faydalanarak
enerji tasarrufu sağlanması amacıyla iklimlendirme sistemleri gibi düşük
sıcaklık uygulamalarında da kullanılmaktadır. Bu çalışmada, döner tip
rejeneratörler için geliştirilen matematiksel model sonlu farklar yöntemi
kullanılarak çözülmüş ve bu yöntemde kullanılacak sınır şartlarının çözüm
üzerindeki etkileri araştırılmıştır. Periyotlar arası geçiş noktalarında iki
farklı sınır şartı kullanılmıştır. Bir periyottan diğer periyoda (sıcak
periyottan soğuk periyoda ya da soğuk periyottan sıcak periyoda) geçiş
noktalarında, sınır şartı olarak doğrudan akışkan sıcaklığını vermek yerine, bu
noktalarda akışkanda iletimle ısı transferi olmadığı varsayımının daha doğru sonuçlar
verdiği ortaya konmuştur.




Kaynakça

  • Nusselt W., Die theorie des winderhitzers, Zeitschrift Verein Deutscher Ingenieure, 71, 85-91, 1927.
  • Hausen H., Über die theorie des wärmeaustausches in regeneratoren, Zeitschrift Angewandte Math.Mech., 9, 173-200, 1929.
  • Schumann T.E.W., A liquid flowing through a porous prism, Heat Transfer, J.Franklin Inst., 405-416, 1929.
  • Willmott A.J., Hichliffe C., The effect of gas heat storage upon the performance of the thermal regenerator, Int. Journal of Heat Mass Transfer, 19, 821-826, 1976.
  • Romie F.E., Periodic thermal storage: The regenerator, Journal of Heat Transfer, Transactions of ASME, 101, 726-731, 1979.
  • Atthey D.R., An approximate thermal analysis for a regenerative heat exchanger, Int. Journal of Heat Mass Transfer, 31(7), 1431-1441, 1988.
  • Romie F.E., Transient response of rotary regenerators, Journal of Heat Transfer, Transactions of ASME, 110, 836-840, 1988.
  • Skiepko T., The effect of matrix longitudinal heat conduction on the temperature fields in the rotary heat exchanger, Int. Journal of Heat Mass Transfer, 31(11), 2227-2238, 1988.
  • Worsϕe-Schmidt P., Effect of fresh air purging on the efficiency of energy recovery from exhaust air in rotary regenerators, Int. Journal of Refrigeration, 14, 233-239, 1991.
  • Shah R.K., Skiepko T., Influence of leakage distribution on the thermal performance of a rotary regenerator, Applied Thermal Engineering, 19, 685-705, 1999.
  • Büyükalaca O., Yılmaz T., Influence of rotational speed on effectiveness of rotary-type heat exchangers, Heat and Mass Transfer, 38, 441-447, 2002.
  • Ghodsipour N., Sadrameli M., Experimental and sensitivity analysis of a rotary air preheater for the flue gas heat recovery, Applied Thermal Engineering, 23, 571–580, 2003.
  • Sanaye S., Jafari S., Ghaebi H., Optimum operational conditions of a rotary regenerator using genetic algorithm, Energy and Buildings, 40, 1637–1642, 2008.
  • Seo J.W., Lee D.Y, Kim D.S., A simple effectiveness model for heat wheels, International Journal of Heat and Mass Transfer, 120, 1358–1364, 2018.
  • Akbari A., Kouravand S., Chegini G., Experimental analysis of a rotary heat exchanger for waste heat recovery from the exhaust gas of dryer, Applied Thermal Engineering, 138, 668–674, 2018.
  • Edis E., Kuş H., Determination of hygrothermal performance of building envelope by computer simulation, Journal of the Faculty of Engineering and Architecture of Gazi University, 29(2), 311-320, 2014.
  • Ünal Ş., Erdinç M.T., Kutlu Ç., Thermodynamic analysis of a refrigeration system with double evaporators and ejector, Journal of the Faculty of Engineering and Architecture of Gazi University, 31(4), 1039-1047, 2016.
  • Cihan E., Kavasoğulları B., Demir H., The design and performance improvement of liquid desiccant dehumidification system, Journal of the Faculty of Engineering and Architecture of Gazi University, 32(3), 709-717, 2017.
  • Banks P.J., Prediction of heat and mass regenerator performance using nonlinear analogy method: Part 1- Basis, Journal of Heat Transfer, Transactions of ASME, 107, 222-229, 1985.
  • Aly S.E., Fathalah K.A., Waste heat driven radially cooled rotary dehumidifier (RCRD), Energy Conversion and Management, 35(10), 887-907, 1994.
  • Sphaier L.A., Worek W.M., Analysis of heat and mass transfer in porous sorbents used in rotary regenerators, International Journal of Heat and Mass Transfer, 47, 3415–3430, 2004.
  • Yamaguchi S., Saito K., Numerical and experimental performance analysis of rotary desiccant wheels, International Journal of Heat and Mass Transfer, 60, 51–60, 2013.
  • Kang H., Lee G., Lee D.Y., Explicit analytic solution for heat and mass transfer in a desiccant wheel using a simplified model, Energy, 93,2559-2567, 2015.
  • Chung H.J., Lee J.S., Changhyun Baek, Hoon Kang, Yongchan Kim, Numerical analysis of the performance characteristics and optimal design of a plastic rotary regenerator considering leakage and adsorption, Applied Thermal Engineering, 109, 227–237, 2016.
  • Mandegari M.A., Farzad S., Angrisani G., Pahlavanzadeh H., Study of purge angle effects on the desiccant wheel performance, Energy Conversion and Management, 137, 12–20, 2017.
  • O’Connor D., Calautit J.K., Hughes B.R., A novel design of a rotary desiccant system for reduced dehumidification regeneration air temperature, Energy Procedia, 142, 253-258, 2017.
  • Holmberg R.B., Combined heat and mass transfer in regenerators with hygroscopic materials, Journal of Heat Transfer, Transactions of ASME, 101, 205-210, 1979.
  • Li C.H., A numerical finite difference method for performance evaluation of a periodic-flow heat exchanger, Journal of Heat Transfer, Transactions of ASME, 105, 611-617, 1983.
  • Mioralli P.C., Ganzarolli M.M., Thermal analysis of a rotary regenerator with fixed pressure drop or fixed pumping power, Applied Thermal Engineering, 52, 187-197, 2013.
  • Kaydan A.H., Hajidavalloo E., Three-dimensional simulation of rotary air preheater in steam power plant, Applied Thermal Engineering, 73, 399-407, 2014.
  • Alhusseny A., Turan A., An effective engineering computational procedure to analyze and design rotary regenerators using a porous media approach, International Journal of Heat and Mass Transfer, 95, 593–605, 2016.
  • Özdemir K., Serincan M.F., A computational fluid dynamics model of a rotary regenerative heat exchanger in a flue gas desulfurization system, Applied Thermal Engineering, 143, 988–1002, 2018.
  • Ünal Ş., Numerical calculation of the effectiveness of rotary regenerators, PhD Thesis, Çukurova University, Institute of Natural and Applied Sciences Department of Mechanical Engineering, Adana, 1996.
  • Büyükalaca O., Doğruyol E., The influence of the rotation speed of a rotary regenerator on performance, Tr. J. of Engineering and Environmental Science, 22, 315-322, 1998.
Toplam 34 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mimarlık
Bölüm Makaleler
Yazarlar

Şaban Ünal 0000-0002-4276-2412

Yayımlanma Tarihi 21 Temmuz 2020
Gönderilme Tarihi 11 Mayıs 2019
Kabul Tarihi 25 Mayıs 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 35 Sayı: 4

Kaynak Göster

APA Ünal, Ş. (2020). Döner tip rejeneratör diferansiyel denklemlerinin çözümü için en uygun sınır şartlarının belirlenmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 35(4), 2061-2074. https://doi.org/10.17341/gazimmfd.563263
AMA Ünal Ş. Döner tip rejeneratör diferansiyel denklemlerinin çözümü için en uygun sınır şartlarının belirlenmesi. GUMMFD. Temmuz 2020;35(4):2061-2074. doi:10.17341/gazimmfd.563263
Chicago Ünal, Şaban. “Döner Tip rejeneratör Diferansiyel Denklemlerinin çözümü için En Uygun sınır şartlarının Belirlenmesi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 35, sy. 4 (Temmuz 2020): 2061-74. https://doi.org/10.17341/gazimmfd.563263.
EndNote Ünal Ş (01 Temmuz 2020) Döner tip rejeneratör diferansiyel denklemlerinin çözümü için en uygun sınır şartlarının belirlenmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 35 4 2061–2074.
IEEE Ş. Ünal, “Döner tip rejeneratör diferansiyel denklemlerinin çözümü için en uygun sınır şartlarının belirlenmesi”, GUMMFD, c. 35, sy. 4, ss. 2061–2074, 2020, doi: 10.17341/gazimmfd.563263.
ISNAD Ünal, Şaban. “Döner Tip rejeneratör Diferansiyel Denklemlerinin çözümü için En Uygun sınır şartlarının Belirlenmesi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 35/4 (Temmuz 2020), 2061-2074. https://doi.org/10.17341/gazimmfd.563263.
JAMA Ünal Ş. Döner tip rejeneratör diferansiyel denklemlerinin çözümü için en uygun sınır şartlarının belirlenmesi. GUMMFD. 2020;35:2061–2074.
MLA Ünal, Şaban. “Döner Tip rejeneratör Diferansiyel Denklemlerinin çözümü için En Uygun sınır şartlarının Belirlenmesi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, c. 35, sy. 4, 2020, ss. 2061-74, doi:10.17341/gazimmfd.563263.
Vancouver Ünal Ş. Döner tip rejeneratör diferansiyel denklemlerinin çözümü için en uygun sınır şartlarının belirlenmesi. GUMMFD. 2020;35(4):2061-74.