Araştırma Makalesi
BibTex RIS Kaynak Göster

İki kriterli tek makinalı çizelgeleme problemi için bir yaklaşım

Yıl 2020, Cilt: 35 Sayı: 4, 2075 - 2088, 21.07.2020
https://doi.org/10.17341/gazimmfd.573734

Öz

Bu çalışmada,
maksimum ağırlıklı geç bitirme ve ağırlıklı toplam akış zamanının en
küçüklendiği iki kriterli tek makinalı çizelgeleme problemi için bir yaklaşım
önerilmiştir. Tüm baskın noktaları üretebilen bu algoritma; aynı zamanda karar
vericinin belirlediği bir kalite seviyesine göre baskın nokta kümesini temsil
edebilen bir altküme bulmayı da garantilemektedir. Geliştirilen yaklaşım,
farklı büyüklükteki ve farklı özelliklerdeki problemler üzerinde farklı kalite
seviyelerinde uygulanmıştır. Deney sonuçları, algoritmamızın hem çözüm süresi
hem karar vericiye sunulan çizelge sayısı açısından iyi bir yaklaşım olduğunu
göstermektedir. 

Kaynakça

  • 1. Ehrgott, M. ve Gandibleux, X., A survey and annotated bibliography of multiobjective combinatorial optimization, OR Spektrum, 22, 425-460, 2000.
  • 2. Dileepan, P. and Sen, T., Bicriterion static scheduling research for a single machine, Omega, 16 (1), 53-59, 1988.
  • 3. Fry, T.D., Armstrong, R.D. ve Lewis, H., A framework for single machine multiple objective sequencing research, Omega, 17(6), 595-607, 1989.
  • 4. Nagar, A., Haddock, J. ve Heragu, S., Multiple and bicriteria scheduling: A literature survey, European journal of operational research, 81 (1), 88-104, 1995.
  • 5. Eren, T., ve Güner, E., Tek ve Paralel Makinalı Problemlerde Çok Ölçütlü Çizelgeleme problemleri için bir Literatür taraması, Gazi Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 17 (4), 37-69, 2002.
  • 6. Hoogeveen, H., Multicriteria scheduling, European Journal of Operational Research, 167(3), 592-623, 2005.
  • 7. T’kindt V ve Billaut J-C, Multicriteria scheduling: theory, models and algorithms. Springer, Berlin, 2002.
  • 8. Van Wassenhove, L. N., ve Gelders, F., Solving A Bicriterion Scheduling Problem, European Journal of Operational Research, 4 (1), 42-48, 1980.
  • 9. Smith, W. E., Varios Optimizers for Single-Stage Production, Naval Research Logistics Quarterly, 3, 59-66, 1956.
  • 10. Köksalan, M. ve Keha, A.B., Using genetic algorithms for single-machine bicriteria scheduling problems. European Journal of Operational Research, 145 (3), 543-556, 2003.
  • 11. Huo, Y., Leung, J.Y.T. ve Zhao, H., Bi-criteria scheduling problems: Number of tardy jobs and maximum weighted tardiness. European Journal of Operational Research, 177 (1), 116-134, 2007.
  • 12. He, C., Lin, H. ve Wang, X., Single machine bicriteria scheduling with equal-length jobs to minimize total weighted completion time and maximum cost. 4OR, 12(1), 87-93, 2014.
  • 13. Shabtay, D. ve Kaspi, M., Minimizing the total weighted flow time in a single machine with controllable processing times. Computers & Operations Research, 31(13), 2279-2289, 2004.
  • 14. Sayın, S., Measuring the quality of discrete representations of efficient sets in multiple objective mathematical programming, Mathematical Programming, Ser. A 87, 543-560, 2000.
  • 15. Wu, J. ve Azarm, S., Metrics for Quality Assessment of a Multiobjective Design Optimization Solution Set,” Journal of Mechanical Design, Transactions of the ASME, 123 (1), 18-25, 2001.
  • 16. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C. M., ve Grunert da Fonseca, V. Performance Assessment of Multiobjective Optimizers: An Analysis and Review, IEEE Transactions on Evolutionary Computation, 7 (2), 117-132, 2003.
  • 17. Faulkenberg, S.L. ve Wiecek, M.M., On the quality of discrete representations in multiple objective programming. Optimization and Engineering, 11 (3), 423-440, 2010.
  • 18. Sylva, J., Crema, A., A method for finding well-dispersed subsets of non-dominated vectors for multiple objective mixed integer linear programs,” European Journal of Operational Research, 180 (3), 1011-1027, 2007.
  • 19. Masin, M. ve Bukchin, Y., Diversity Maximization Approach for Multiobjective Optimization,” Operations Research, 56 (2), 411-424, 2008.
  • 20. Ceyhan, G., Köksalan, M. ve Lokman, B., “Finding a representative nondominated set for multi-objective mixed integer programs”, European Journal of Operational Research, 272(1), 61-77, 2019.
  • 21. Baker, K.R. ve Martin, J.B., An experimental comparison of solution algorithms for the single machine tardiness problem, Naval Research Logistics Quarterly, 21, 187–200, 1974.
  • 22. Rinnooy Kan, A.H.G., Lageweg, B.J. ve Lenstra, J.K., Minimizing total costs in one machine scheduling, Operations Research 23, 908-927, 1975.
  • 23. Ow, P.S. ve Morton, T.E., The single machine early/tardy problem, Management Science 35 (2), 177-191, 1992.
Toplam 23 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mimarlık
Bölüm Makaleler
Yazarlar

Banu Lokman 0000-0002-6664-9430

Yayımlanma Tarihi 21 Temmuz 2020
Gönderilme Tarihi 4 Haziran 2019
Kabul Tarihi 12 Mayıs 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 35 Sayı: 4

Kaynak Göster

APA Lokman, B. (2020). İki kriterli tek makinalı çizelgeleme problemi için bir yaklaşım. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 35(4), 2075-2088. https://doi.org/10.17341/gazimmfd.573734
AMA Lokman B. İki kriterli tek makinalı çizelgeleme problemi için bir yaklaşım. GUMMFD. Temmuz 2020;35(4):2075-2088. doi:10.17341/gazimmfd.573734
Chicago Lokman, Banu. “İki Kriterli Tek Makinalı çizelgeleme Problemi için Bir yaklaşım”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 35, sy. 4 (Temmuz 2020): 2075-88. https://doi.org/10.17341/gazimmfd.573734.
EndNote Lokman B (01 Temmuz 2020) İki kriterli tek makinalı çizelgeleme problemi için bir yaklaşım. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 35 4 2075–2088.
IEEE B. Lokman, “İki kriterli tek makinalı çizelgeleme problemi için bir yaklaşım”, GUMMFD, c. 35, sy. 4, ss. 2075–2088, 2020, doi: 10.17341/gazimmfd.573734.
ISNAD Lokman, Banu. “İki Kriterli Tek Makinalı çizelgeleme Problemi için Bir yaklaşım”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 35/4 (Temmuz 2020), 2075-2088. https://doi.org/10.17341/gazimmfd.573734.
JAMA Lokman B. İki kriterli tek makinalı çizelgeleme problemi için bir yaklaşım. GUMMFD. 2020;35:2075–2088.
MLA Lokman, Banu. “İki Kriterli Tek Makinalı çizelgeleme Problemi için Bir yaklaşım”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, c. 35, sy. 4, 2020, ss. 2075-88, doi:10.17341/gazimmfd.573734.
Vancouver Lokman B. İki kriterli tek makinalı çizelgeleme problemi için bir yaklaşım. GUMMFD. 2020;35(4):2075-88.