Araştırma Makalesi
BibTex RIS Kaynak Göster

Effect of chromium content on Fe(18-x)CrxB2(X=3,4,5) hardfacing electrode on microstructure, abrasion and corrosion behavior

Yıl 2021, Cilt: 36 Sayı: 1, 177 - 190, 01.12.2020
https://doi.org/10.17341/gazimmfd.689230

Öz

In this study, covered electrodes with Fe(18-X) CrXB2 (x=3,4,5) composition have been produced and coating was carried out on AISI 1010 steel by using electric arc welding method. It was observed that the presence of eutectic boride phases formed as in-situ in the final microstructures. In addition, ın the compositions showing hypo-eutectic phase distribution, mainly consist of α(Fe-Cr), tetragonal (Fe, Cr)2B, orthorhombic (Fe, Cr)2B and trace amount of (Fe, Cr)3(C,B) phases were determined. In the reciprocal wear test against alumina ball, it was determined that the friction coefficient values of the coating layers decreases with increasing load and changed between 0.844-0.65. However, it has been observed that the change of friction coefficient moves independently of the chromium ratio. It was observed that the wear rate decreased with increasing chromium ratio, despite that increased with increasing load. The lowest wear rate was found 2.32x10-5 (mm3/m) in 3N load for the electrode with the Fe13Cr5B2 composition and the highest value was found to be 8.16x10-5 (mm3 /m) for electrode with Fe15Cr3B2 composition at 9N load. Potentiodynamic polarization test has been performed to the surface alloyed layers coated with electrodes with Fe(18-X)CrXB2 (x=3,4,5) composition. According to the potentiodynamic polarization test, it was observed that the corrosion resistance increases with increasing chromium content. According to corrosion test, the Icor value decreased according to the increasing amount of chromium and was measured as 2.166 and 1.615 and 1.242 µA/cm2 , respectively. It was determined that the Ecor value increased with increasing chrome ratio and reached -473.991, -450.056 and -347.157 mV respectively.

Kaynakça

  • Gramajo J., Gualco A., Svoboda H.. Study of the welding procedure in nanostructured super-hard Fe- (Cr, Mo, W) - (C, B) hardfacing. Int J Refract Met Hard Mater. 105178 (2020).
  • Holmberg K., Erdemir A.. Influence of tribology on global energy consumption, costs and emissions. Friction, 5 (3), 263–284 (2017).
  • Holmberg K., Kivikytö-Reponen P., Härkisaari P., Valtonen K., Erdemir A., Global energy consumption due to friction and wear in the mining industry, Tribol Int, 115 (5), 116–139 2017.
  • Bedolla PO., Vorlaufer G., Rechberger C., Bianchi D., Eder SJ., Polak R., et al., Combined experimental and numerical simulation of abrasive wear and its application to a tillage machine component, Tribol Int, 127 (1): 122–128, 2018.
  • Holmberg K., Siilasto R., Laitinen T., Andersson P., Jäsberg A.. Global energy consumption due to friction in paper machines, Tribol Int, 62, 58–77, 2013.
  • Gerhardus K., Jeff V., Thopson N., Moghissi O., Gould M., Payer J.. International Measures of Prevention , Application, and Economics of Corrosion Technologies Study. NACE IMPACT Rep, 1–216, 2006.
  • Avcıoğlu C., Özata F., Nirun H., Özbek K., Gürel Soyuer Ö., Sektörel Görünüm, Demir Çelik, 2018.
  • Methods D. Process Selection Guide. Surf Hardening Steels Underst Basics. (Eq 1), 1–16, 2005.
  • Zahiri R., Sundaramoorthy R., Lysz P., Subramanian C., Hardfacing using ferro-alloy powder mixtures by submerged arc welding, Surf Coatings Technol, 260, 220–229, 2014.
  • Wei D-B., Liang H-X., Li S-Q., Li F-K., Ding F., Wang S-Y., et al., Microstructure and tribological behavior of W-Mo alloy coating on powder metallurgy gears based on double glow plasma surface alloying technology., J Min Metall Sect B Metall., 55 (2), 227–234, 2019.
  • Wang X., Han F., Liu X., Qu S., Zou Z.. Microstructure and wear properties of the Fe – Ti – V – Mo – C hardfacing alloy. 265, 583–589, 2008.
  • Morsy M., El-Kashif E., The effect of microstructure on high-stress abrasion resistance of Fe-Cr-C hardfacing deposits., Weld World., 58 (4), 491–497, 2014.
  • Oo HZ., Muangjunburee P., Wear behaviour of hardfacing on 3.5% chromium cast steel by submerged arc welding, Mater Today Proc,. 5 (3, Part 2), 9281–9289, 2018.
  • Chen J-H., Hsieh C-C., Hua P-S., Chang C-M, Lin C-M., Wu PT-Y., et al. Microstructure and abrasive wear properties of Fe-Cr-C hardfacing alloy cladding manufactured by Gas Tungsten Arc Welding (GTAW), Met Mater Int, 19 (1), 93–98, 2013.
  • Babu S., Balasubramanian V., Reddy GM., Balasubramanian TS., Improving the ballistic immunity of armour steel weldments by plasma transferred arc (PTA) hardfacing, Mater Des, 31(5), 2664–2669, 2010.
  • Bahoosh M., Shahverdi HR., Farnia A., Macro-indentation fracture mechanisms in a super-hard hardfacing Fe-based electrode, Eng Fail Anal, 92, 480–494, 2018.
  • Joo YA., Yoon TS., Park SH., Lee KA., Microstructure and compression properties of Fe-Cr-B alloy manufactured using laser metal deposition, Arch Metall Mater, 63 (3), 1459–1462, 2018.
  • Azimi G., Shamanian M., Effects of silicon content on the microstructure and corrosion behavior of Fe–Cr–C hardfacing alloys, J Alloys Compd, 505 (2), 598–603, 2010.
  • Lu L., Soda H., McLean A., Microstructure and mechanical properties of Fe–Cr–C eutectic composites, Mater Sci Eng A, 347 (1), 214–222, 2003.
  • Berns H., Fischer A., Microstructure of Fe-Cr-C Hardfacing Alloys with Additions of Nb, Ti and, B. Mater Charact, 39 (2), 499–527 (1997).
  • Fan C., Chen M-C., Chang C-M, Wu W., Microstructure change caused by (Cr,Fe)23C6 carbides in high chromium Fe–Cr–C hardfacing alloys, Surf Coatings Technol, 201 (3), 908–912, 2006.
  • Inoue A., Masumoto T., Carbide reactions (M3C{\textrightarrow}M7C3{\textrightarrow}M23C6{\textrightarrow}M6C) during tempering of rapidly solidified high carbon Cr-W and Cr-Mo steels, Metall Trans A, 11 (5), 739–747, 1980.
  • Yamada K., Ohtani H., Hasebe M., Thermodynamic Analysis of the Fe-Cr-B Ternary System, High Temp Mater Process, 27 (4), 269–284, 2008.
  • Predel B., B-Cr (Boron-Chromium), In (Ed: Madelung O), B-Ba-C-Zr., Springer Berlin Heidelberg, Berlin, Heidelberg pp. 1–3, 1992.
  • Gigolotti J.C.J., Chad V.M., Faria MIST., Coelho GC, Nunes CA, Suzuki PA. Microstructural characterization of as-cast Cr–B alloys, Mater Charact, 59 (1), 47–52, 2008.
  • Sorour A.A., Chromik R.R., Gauvin R., Jung I-H, Brochu M., Understanding the solidification and microstructure evolution during CSC-MIG welding of Fe–Cr–B-based alloy, Mater Charact, 86, 127–138 2013.
  • Sorour A.A., Chromik R.R., Brochu M., Tribology of a Fe--Cr--B-Based Alloy Coating Fabricated by a Controlled Short-Circuit MIG Welding Process., Metallogr Microstruct Anal., 2 (4), 223–233, 2013.
  • Lentz J., Röttger A., Großwendt F., Theisen W., Enhancement of hardness, modulus and fracture toughness of the tetragonal (Fe,Cr)2B and orthorhombic (Cr,Fe)2B phases with addition of Cr. Mater Des. 156, 113–124, 2018.
  • Do J., Lee H-J., Jeon C., Ha DJ., Kim CP., Lee B-J., et al. Effects of Cr and B Contents on Volume Fraction of (Cr,Fe)2B and Hardness in Fe-Based Alloys Used for Powder Injection Molding, Metall Mater Trans A, 43 (7), 2237–2250, 2012.
  • Tian Y., Ju J., Fu H., Ma S., Lin J., Lei Y., Effect of Chromium Content on Microstructure , Hardness , and Wear Resistance of As-Cast Fe-Cr-B Alloy, J Mater Eng Perform, 28 (10), 6428–6437, 2019.
  • Son C., Yoon TAES., Lee S., Correlation of Microstructure with Hardness , Wear Resistance , and Corrosion Resistance of Powder-Injection-Molded Specimens of Fe-Alloy Powders, 40 (5), 1110-1117, (2009).
  • Özel C., Gürgenç T., Yiğit O., Comparison of Microstructure and Microhardness of Fe-Cr-W-B-C and Fe-Cr-B-C Coating on Low Carbon Steel Coated with PTA Method, In (Eds: Halıcıoğlu R, Akın Kırlı H, and Fedai Y), International Advanced Researches & Engineering Congress 2017 Proceeding Book. Osmaniye-Türkiye, 743–751, 2017.
  • Gongjun C., Wei J., Gongxiong W., Wear behavior of Fe-Cr-B alloys under dry sliding condition, Ind Lubr Tribol, 67 (4), 336–343, 2015.
  • Rai VK., Srivastava R., Nath SK., Ray S., Wear in cast titanium carbide reinforced ferrous composites under dry sliding., Wear, 231 (2), 265–271, 1999.
  • Hu G.., Meng H, Liu J., Friction and sliding wear behavior of induction melted FeCrB metamorphic alloy coating, Appl Surf Sci, 308, 363–371, 2014.
  • Durmuş H., Çömez N., Gül C., Yurddaşkal M., Yurddaşkal M., Wear performance of Fe-Cr-C-B hardfacing coatings, Dry sand/rubber wheel test and ball-on-disc test, Int J Refract Met Hard Mater, 77, 37–43, 2018.
  • Aslan O., Plazma Sprey Kaplama Yöntemiyle Tek ve Çift Katmanlı Kaplanan AISI 316L Paslanmaz Çeliğin Korozyon Davranışlarının İncelenmesi, Master, Afyon Kocatepe Üniversitesi, Fen Bilimleri Enstitüsü, Afyonkarahisar, (2015).
  • Galvele JR., Tafel’s law in pitting corrosion and crevice corrosion susceptibility, Corros Sci, 47 (12), 3053–3067, 2005.
  • Prince M., Thanu AJ., Gopalakrishnan P., Improvement in wear and corrosion resistance of AISI 1020 steel by high velocity oxy-fuel spray coating containing Ni-Cr-B-Si-Fe-C, High Temp Mater Process, 31 (2), 149–155 2012.
  • Eren H., Ferritik Paslanmaz Çeliğin Korozyon Davranışına Karbür Yapıcı Elementlerin Etkilerinin İncelenmesi, Doktora, Fırat Üniversitesi, Fen Bilimleri Enstitüsü, Elazığ, 2005.
  • Gou J., Wang Y., Li X., Zhou F., Effect of rare earth oxide nano-additives on the corrosion behavior of Fe-based hardfacing alloys in acid, near-neutral and alkaline 3.5 wt.% NaCl solutions, Appl Surf Sci, 431, 143–151, 2018.
  • Bhagavathi L.R., Chaudhari G.P., Nath S.K., Mechanical and corrosion behavior of plain low carbon dual-phase steels, Mater Des, 32 (1), 433–440, 2011.
  • Sun G.F., Zhang Y.K., Zhang M.K., Zhou R., Wang K., Liu C.S., et al. Microstructure and corrosion characteristics of 304 stainless steel laser-alloyed with Cr-CrB2, Appl Surf Sci, 295, 94–107, 2014.
  • Gökergil H.M., Çinko, Nikel ve Nikel/Kobalt Kaplanmış Yüksek Karbonlu Çeliğin Korozyon Davranışının İncelenmesi, Master, Kocaeli Üniversitesi, Fen Bilimleri Enstitüsü, Kocaeli, 2010.
  • Márquez-Herrera A., Fernandez-Muñoz J.L., Zapata-Torres M., Melendez-Lira M., Cruz-Alcantar P., Fe2B coating on ASTM A-36 steel surfaces and its evaluation of hardness and corrosion resistance, Surf Coatings Technol, 254, 433–439, 2014.
  • Esra P., 6-Amino-m-Kresol Polimerinin Bakır ve Paslanmaz Çelik Üzerine Sentezi ve Korozyon Performansının İncelenmesi, Master, Çukurova Üniversitesi, Fen Bilimleri Enstitüsü, 2009.

Krom içeriğinin Fe(18-x)CrxB2 (X=3,4,5) sert dolgu elektrotunda mikroyapı, aşınma ve korozyon davranışı üzerindeki etkisi

Yıl 2021, Cilt: 36 Sayı: 1, 177 - 190, 01.12.2020
https://doi.org/10.17341/gazimmfd.689230

Öz

Bu çalışmada, Fe(18-X)CrXB2 (X=3,4,5) bileşimine sahip örtülü elektrotlar üretilmiş ve AISI 1010 çeliği üzerine elektrik ark kaynak yöntemi kullanılarak kaplama işlemi gerçekleştirilmiştir. Nihai mikroyapılarda in-situ olarak oluşan ötektik borür fazlarının varlığı gözlemlenmiştir. Bununla birlikte, ötektik altı faz dağılımı gösteren bileşimlerde, başlıca α(Fe-Cr), tetragonal (Fe,Cr)2B, ortorombik (Fe,Cr)2B ve eser miktarda (Fe,Cr)3(C,B) fazlarının varlığı tespit edilmiştir. Alümina bilyeye karşı gerçekleştirilen ileri-geri aşınma testinde, kaplama tabakalarının sürtünme katsayısı değerleri artan yük ile birlikte azaldığı ve 0,844-0,65 arasında değiştiği tespit edilmiştir. Bununla birlikte, sürtünme katsayısının değişimi krom oranından bağımsız olarak hareket ettiği gözlemlenmiştir. Aşınma oranının ise artan krom miktarı ile azaldığı buna karşın artan yük ile arttığı gözlemlenmiştir. Aşınma oranının, en düşük değeri 3N yükte Fe13Cr5B2 bileşimine sahip elektrot için 2,32x10-5 (mm3/m); en yüksek değeri ise 9N yükte Fe15Cr3B2 bileşimine sahip elektrot için 8,16x10-5 (mm3/m) olduğu tespit edilmiştir. Fe(18-X)CrXB2 (X=3,4,5) bileşimine sahip elektrotlar ile kaplanmış yüzey alaşım tabakalarına potansiyodinamik polorizasyon testi uygulanmıştır. Potansiyodinamik polorizasyon testine göre korozyon direncinin artan krom miktarı ile arttığı görülmüştür. Korozyon testine göre, Ikor değerinin artan krom miktarına göre azalarak sırasıyla 1,7x10-4 µA/cm2 ve 6,5x10-5 µA/cm2 ve 3,4 x10-5 µA/cm2 olarak ölçülmüştür. Ekor değerinin ise artan krom miktarı ile arttığı ve sırasıyla -0,119 mV, -0,179 mV ve -0,239 mV değerine ulaştığı tespit edilmiştir.

Kaynakça

  • Gramajo J., Gualco A., Svoboda H.. Study of the welding procedure in nanostructured super-hard Fe- (Cr, Mo, W) - (C, B) hardfacing. Int J Refract Met Hard Mater. 105178 (2020).
  • Holmberg K., Erdemir A.. Influence of tribology on global energy consumption, costs and emissions. Friction, 5 (3), 263–284 (2017).
  • Holmberg K., Kivikytö-Reponen P., Härkisaari P., Valtonen K., Erdemir A., Global energy consumption due to friction and wear in the mining industry, Tribol Int, 115 (5), 116–139 2017.
  • Bedolla PO., Vorlaufer G., Rechberger C., Bianchi D., Eder SJ., Polak R., et al., Combined experimental and numerical simulation of abrasive wear and its application to a tillage machine component, Tribol Int, 127 (1): 122–128, 2018.
  • Holmberg K., Siilasto R., Laitinen T., Andersson P., Jäsberg A.. Global energy consumption due to friction in paper machines, Tribol Int, 62, 58–77, 2013.
  • Gerhardus K., Jeff V., Thopson N., Moghissi O., Gould M., Payer J.. International Measures of Prevention , Application, and Economics of Corrosion Technologies Study. NACE IMPACT Rep, 1–216, 2006.
  • Avcıoğlu C., Özata F., Nirun H., Özbek K., Gürel Soyuer Ö., Sektörel Görünüm, Demir Çelik, 2018.
  • Methods D. Process Selection Guide. Surf Hardening Steels Underst Basics. (Eq 1), 1–16, 2005.
  • Zahiri R., Sundaramoorthy R., Lysz P., Subramanian C., Hardfacing using ferro-alloy powder mixtures by submerged arc welding, Surf Coatings Technol, 260, 220–229, 2014.
  • Wei D-B., Liang H-X., Li S-Q., Li F-K., Ding F., Wang S-Y., et al., Microstructure and tribological behavior of W-Mo alloy coating on powder metallurgy gears based on double glow plasma surface alloying technology., J Min Metall Sect B Metall., 55 (2), 227–234, 2019.
  • Wang X., Han F., Liu X., Qu S., Zou Z.. Microstructure and wear properties of the Fe – Ti – V – Mo – C hardfacing alloy. 265, 583–589, 2008.
  • Morsy M., El-Kashif E., The effect of microstructure on high-stress abrasion resistance of Fe-Cr-C hardfacing deposits., Weld World., 58 (4), 491–497, 2014.
  • Oo HZ., Muangjunburee P., Wear behaviour of hardfacing on 3.5% chromium cast steel by submerged arc welding, Mater Today Proc,. 5 (3, Part 2), 9281–9289, 2018.
  • Chen J-H., Hsieh C-C., Hua P-S., Chang C-M, Lin C-M., Wu PT-Y., et al. Microstructure and abrasive wear properties of Fe-Cr-C hardfacing alloy cladding manufactured by Gas Tungsten Arc Welding (GTAW), Met Mater Int, 19 (1), 93–98, 2013.
  • Babu S., Balasubramanian V., Reddy GM., Balasubramanian TS., Improving the ballistic immunity of armour steel weldments by plasma transferred arc (PTA) hardfacing, Mater Des, 31(5), 2664–2669, 2010.
  • Bahoosh M., Shahverdi HR., Farnia A., Macro-indentation fracture mechanisms in a super-hard hardfacing Fe-based electrode, Eng Fail Anal, 92, 480–494, 2018.
  • Joo YA., Yoon TS., Park SH., Lee KA., Microstructure and compression properties of Fe-Cr-B alloy manufactured using laser metal deposition, Arch Metall Mater, 63 (3), 1459–1462, 2018.
  • Azimi G., Shamanian M., Effects of silicon content on the microstructure and corrosion behavior of Fe–Cr–C hardfacing alloys, J Alloys Compd, 505 (2), 598–603, 2010.
  • Lu L., Soda H., McLean A., Microstructure and mechanical properties of Fe–Cr–C eutectic composites, Mater Sci Eng A, 347 (1), 214–222, 2003.
  • Berns H., Fischer A., Microstructure of Fe-Cr-C Hardfacing Alloys with Additions of Nb, Ti and, B. Mater Charact, 39 (2), 499–527 (1997).
  • Fan C., Chen M-C., Chang C-M, Wu W., Microstructure change caused by (Cr,Fe)23C6 carbides in high chromium Fe–Cr–C hardfacing alloys, Surf Coatings Technol, 201 (3), 908–912, 2006.
  • Inoue A., Masumoto T., Carbide reactions (M3C{\textrightarrow}M7C3{\textrightarrow}M23C6{\textrightarrow}M6C) during tempering of rapidly solidified high carbon Cr-W and Cr-Mo steels, Metall Trans A, 11 (5), 739–747, 1980.
  • Yamada K., Ohtani H., Hasebe M., Thermodynamic Analysis of the Fe-Cr-B Ternary System, High Temp Mater Process, 27 (4), 269–284, 2008.
  • Predel B., B-Cr (Boron-Chromium), In (Ed: Madelung O), B-Ba-C-Zr., Springer Berlin Heidelberg, Berlin, Heidelberg pp. 1–3, 1992.
  • Gigolotti J.C.J., Chad V.M., Faria MIST., Coelho GC, Nunes CA, Suzuki PA. Microstructural characterization of as-cast Cr–B alloys, Mater Charact, 59 (1), 47–52, 2008.
  • Sorour A.A., Chromik R.R., Gauvin R., Jung I-H, Brochu M., Understanding the solidification and microstructure evolution during CSC-MIG welding of Fe–Cr–B-based alloy, Mater Charact, 86, 127–138 2013.
  • Sorour A.A., Chromik R.R., Brochu M., Tribology of a Fe--Cr--B-Based Alloy Coating Fabricated by a Controlled Short-Circuit MIG Welding Process., Metallogr Microstruct Anal., 2 (4), 223–233, 2013.
  • Lentz J., Röttger A., Großwendt F., Theisen W., Enhancement of hardness, modulus and fracture toughness of the tetragonal (Fe,Cr)2B and orthorhombic (Cr,Fe)2B phases with addition of Cr. Mater Des. 156, 113–124, 2018.
  • Do J., Lee H-J., Jeon C., Ha DJ., Kim CP., Lee B-J., et al. Effects of Cr and B Contents on Volume Fraction of (Cr,Fe)2B and Hardness in Fe-Based Alloys Used for Powder Injection Molding, Metall Mater Trans A, 43 (7), 2237–2250, 2012.
  • Tian Y., Ju J., Fu H., Ma S., Lin J., Lei Y., Effect of Chromium Content on Microstructure , Hardness , and Wear Resistance of As-Cast Fe-Cr-B Alloy, J Mater Eng Perform, 28 (10), 6428–6437, 2019.
  • Son C., Yoon TAES., Lee S., Correlation of Microstructure with Hardness , Wear Resistance , and Corrosion Resistance of Powder-Injection-Molded Specimens of Fe-Alloy Powders, 40 (5), 1110-1117, (2009).
  • Özel C., Gürgenç T., Yiğit O., Comparison of Microstructure and Microhardness of Fe-Cr-W-B-C and Fe-Cr-B-C Coating on Low Carbon Steel Coated with PTA Method, In (Eds: Halıcıoğlu R, Akın Kırlı H, and Fedai Y), International Advanced Researches & Engineering Congress 2017 Proceeding Book. Osmaniye-Türkiye, 743–751, 2017.
  • Gongjun C., Wei J., Gongxiong W., Wear behavior of Fe-Cr-B alloys under dry sliding condition, Ind Lubr Tribol, 67 (4), 336–343, 2015.
  • Rai VK., Srivastava R., Nath SK., Ray S., Wear in cast titanium carbide reinforced ferrous composites under dry sliding., Wear, 231 (2), 265–271, 1999.
  • Hu G.., Meng H, Liu J., Friction and sliding wear behavior of induction melted FeCrB metamorphic alloy coating, Appl Surf Sci, 308, 363–371, 2014.
  • Durmuş H., Çömez N., Gül C., Yurddaşkal M., Yurddaşkal M., Wear performance of Fe-Cr-C-B hardfacing coatings, Dry sand/rubber wheel test and ball-on-disc test, Int J Refract Met Hard Mater, 77, 37–43, 2018.
  • Aslan O., Plazma Sprey Kaplama Yöntemiyle Tek ve Çift Katmanlı Kaplanan AISI 316L Paslanmaz Çeliğin Korozyon Davranışlarının İncelenmesi, Master, Afyon Kocatepe Üniversitesi, Fen Bilimleri Enstitüsü, Afyonkarahisar, (2015).
  • Galvele JR., Tafel’s law in pitting corrosion and crevice corrosion susceptibility, Corros Sci, 47 (12), 3053–3067, 2005.
  • Prince M., Thanu AJ., Gopalakrishnan P., Improvement in wear and corrosion resistance of AISI 1020 steel by high velocity oxy-fuel spray coating containing Ni-Cr-B-Si-Fe-C, High Temp Mater Process, 31 (2), 149–155 2012.
  • Eren H., Ferritik Paslanmaz Çeliğin Korozyon Davranışına Karbür Yapıcı Elementlerin Etkilerinin İncelenmesi, Doktora, Fırat Üniversitesi, Fen Bilimleri Enstitüsü, Elazığ, 2005.
  • Gou J., Wang Y., Li X., Zhou F., Effect of rare earth oxide nano-additives on the corrosion behavior of Fe-based hardfacing alloys in acid, near-neutral and alkaline 3.5 wt.% NaCl solutions, Appl Surf Sci, 431, 143–151, 2018.
  • Bhagavathi L.R., Chaudhari G.P., Nath S.K., Mechanical and corrosion behavior of plain low carbon dual-phase steels, Mater Des, 32 (1), 433–440, 2011.
  • Sun G.F., Zhang Y.K., Zhang M.K., Zhou R., Wang K., Liu C.S., et al. Microstructure and corrosion characteristics of 304 stainless steel laser-alloyed with Cr-CrB2, Appl Surf Sci, 295, 94–107, 2014.
  • Gökergil H.M., Çinko, Nikel ve Nikel/Kobalt Kaplanmış Yüksek Karbonlu Çeliğin Korozyon Davranışının İncelenmesi, Master, Kocaeli Üniversitesi, Fen Bilimleri Enstitüsü, Kocaeli, 2010.
  • Márquez-Herrera A., Fernandez-Muñoz J.L., Zapata-Torres M., Melendez-Lira M., Cruz-Alcantar P., Fe2B coating on ASTM A-36 steel surfaces and its evaluation of hardness and corrosion resistance, Surf Coatings Technol, 254, 433–439, 2014.
  • Esra P., 6-Amino-m-Kresol Polimerinin Bakır ve Paslanmaz Çelik Üzerine Sentezi ve Korozyon Performansının İncelenmesi, Master, Çukurova Üniversitesi, Fen Bilimleri Enstitüsü, 2009.
Toplam 46 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Engin Kocaman 0000-0001-5617-3064

Bülent Kılınç Bu kişi benim 0000-0003-4928-7148

Şaduman Şen 0000-0002-9809-2139

Uğur Şen 0000-0001-7759-3623

Yayımlanma Tarihi 1 Aralık 2020
Gönderilme Tarihi 14 Şubat 2020
Kabul Tarihi 12 Temmuz 2020
Yayımlandığı Sayı Yıl 2021 Cilt: 36 Sayı: 1

Kaynak Göster

APA Kocaman, E., Kılınç, B., Şen, Ş., Şen, U. (2020). Krom içeriğinin Fe(18-x)CrxB2 (X=3,4,5) sert dolgu elektrotunda mikroyapı, aşınma ve korozyon davranışı üzerindeki etkisi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 36(1), 177-190. https://doi.org/10.17341/gazimmfd.689230
AMA Kocaman E, Kılınç B, Şen Ş, Şen U. Krom içeriğinin Fe(18-x)CrxB2 (X=3,4,5) sert dolgu elektrotunda mikroyapı, aşınma ve korozyon davranışı üzerindeki etkisi. GUMMFD. Aralık 2020;36(1):177-190. doi:10.17341/gazimmfd.689230
Chicago Kocaman, Engin, Bülent Kılınç, Şaduman Şen, ve Uğur Şen. “Krom içeriğinin Fe(18-x)CrxB2 (X=3,4,5) Sert Dolgu Elektrotunda mikroyapı, aşınma Ve Korozyon davranışı üzerindeki Etkisi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 36, sy. 1 (Aralık 2020): 177-90. https://doi.org/10.17341/gazimmfd.689230.
EndNote Kocaman E, Kılınç B, Şen Ş, Şen U (01 Aralık 2020) Krom içeriğinin Fe(18-x)CrxB2 (X=3,4,5) sert dolgu elektrotunda mikroyapı, aşınma ve korozyon davranışı üzerindeki etkisi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 36 1 177–190.
IEEE E. Kocaman, B. Kılınç, Ş. Şen, ve U. Şen, “Krom içeriğinin Fe(18-x)CrxB2 (X=3,4,5) sert dolgu elektrotunda mikroyapı, aşınma ve korozyon davranışı üzerindeki etkisi”, GUMMFD, c. 36, sy. 1, ss. 177–190, 2020, doi: 10.17341/gazimmfd.689230.
ISNAD Kocaman, Engin vd. “Krom içeriğinin Fe(18-x)CrxB2 (X=3,4,5) Sert Dolgu Elektrotunda mikroyapı, aşınma Ve Korozyon davranışı üzerindeki Etkisi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 36/1 (Aralık 2020), 177-190. https://doi.org/10.17341/gazimmfd.689230.
JAMA Kocaman E, Kılınç B, Şen Ş, Şen U. Krom içeriğinin Fe(18-x)CrxB2 (X=3,4,5) sert dolgu elektrotunda mikroyapı, aşınma ve korozyon davranışı üzerindeki etkisi. GUMMFD. 2020;36:177–190.
MLA Kocaman, Engin vd. “Krom içeriğinin Fe(18-x)CrxB2 (X=3,4,5) Sert Dolgu Elektrotunda mikroyapı, aşınma Ve Korozyon davranışı üzerindeki Etkisi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, c. 36, sy. 1, 2020, ss. 177-90, doi:10.17341/gazimmfd.689230.
Vancouver Kocaman E, Kılınç B, Şen Ş, Şen U. Krom içeriğinin Fe(18-x)CrxB2 (X=3,4,5) sert dolgu elektrotunda mikroyapı, aşınma ve korozyon davranışı üzerindeki etkisi. GUMMFD. 2020;36(1):177-90.

Cited By