Antimon ihtiva eden çözeltilerden sementasyon ile metalik antimon eldesi ve şartlarının incelenmesi
Yıl 2022,
Cilt: 37 Sayı: 1, 207 - 218, 10.11.2021
Abdullah Uysal
,
Burcu Nilgün Çetiner
Serdar Aktaş
Öz
Antimonun geleneksel kullanım alanlarının yanında, son senelerde güneş enerjisi teknolojilerindeki gelişmeler antimon ve bileşiklerine duyulan ihtiyacının artması ve birincil kaynakların dünyada hızla tükenmesi ile artan kotalar ikincil kaynaklardan antimon geri kazanımının önemini arttırmıştır. Bu çalışma önerilen geri kazanım yönteminde, daha aktif metalin oksitlenerek iyonik haldeki antimonu indirgemesi ve redüksiyon işlemi sonucu metalik antimonun toz şeklinde üretilmesi amaçlanmaktadır. Cevher ve konsantre içeren oksit ve kükürt esaslı antimon, sırasıyla çeşitli asidik ve bazik çözeltiler ile işlenmiştir. Ancak geri kazanım oranı çok düşük olduğundan, ikincil bir kaynak olan asidik sentetik antimon çözeltilerinden antimonun metalik olarak çöktürülmesine etki eden parametreler detaylı olarak incelenmiştir. Deneysel çalışma şartlarına etki edebilecek sementasyon işlemi sırasında reaksiyon süresi, sıcaklık, başlangıç antimon konsantrasyonu, çinko tozu miktarı ve çözelti pH parametreleri incelenerek elde edilen antimon metalinin fiziksel ve kimyasal özellikleri karakterize edilmiştir. Deneysel çalışmalar sonucunda, 25 ml 1000 ppm Sb+3 sentetik çözeltisi 100 mg metalik çinko ilavesi ile 60 dev./dk. karıştırma hızı ile 5 dakika gibi çok kısa sürede %100’e varan geri kazanım verimine ulaşılmış ve % 99 saflıkta metalik antimon elde edilmiştir. Tek aşamalı sementasyonda 100 mg çinko ile % 100 geri kazanım sağlandığı durumda, iki aşamalı sementasyonda % 40 daha az çinko ilavesi ile aynı verime erişilmiştir.
Destekleyen Kurum
Marmara Üniversitesi BAPKO
Proje Numarası
FEN-C-YLP-170419-0122
Teşekkür
Bu çalışma, Marmara Üniversite Bilimsel Araştırma Birimi tarafından FEN-C-YLP-170419-0122 Nolu proje ile maddi olarak desteklenmiştir. Bu çalışmada katkısı bulunan MC-365 Kimyasal Metalurji Laboratuvarı çalışanlarına teşekkür ederiz.
Kaynakça
- Freedman, L.D., Doak, G.O., Long, G.G., (1992). Antimony compounds. Kirk-Othmer Encyclopedia of Chemical Technology, 3rd ed., Vol.3, John Wiley & Sons Inc., New York.
- Herbst, K.A., Rose, G., Hanusch, K., Schumann, Wolf, H.U., (1985). Antimony and antimony compounds. Ullmann’s Encyclopedia of Industrial Chemistry, Vol. A3, VCH Publishers.
- Zirngieble, E. (1986). Metalle in der Umwelt. Chemie Ingenieur Technik, 58(8), 698-698.
- Jha, M., Kumar, V., & Singh, R. (2001). Review of hydrometallurgical recovery of zinc from industrial wastes. Resources, Conservation and Recycling, 33(1), 1-22.
- Chang, F., Lo, S., & Ko, C. (2007). Recovery of copper and chelating agents from sludge extracting solutions. Separation and Purification Technology, 53(1), 49-56.
- Nosier, S., Sallam, S., (2000). Removal of lead ions from wastewater by cementation on a gas-sparged zinc cylinder. Separation and Purification Technology, 18(2), 93-101.
- El Batouti, M. (2003). Cementation reactions in the presence of nitrogen compounds. Journal of Colloid and Interface Science, 263(2), 548-553.
- Dib, A., & Makhloufi, L. (2004). Cementation treatment of copper in wastewater: mass transfer in a fixed bed of iron spheres. Chemical Engineering and Processing: Process Intensification, 43(10), 1265-1273.
- Fouad, O., & Abdel Basir, S. (2005). Cementation-induced recovery of self-assembled ultrafine copper powders from spent etching solutions of printed circuit boards. Powder Technology, 159(3), 127-134.
- Ettler V., Mihaljevic M., Sebek O., Nechutny Z., Antimony availability in highly polluted soils and sediments -A comparison of single extractions, Chemosphere 68, 455-463, 2007.
- Carré P., “Précis de Technologie et de Chimie Industrielle, Tome Deuxième, Cinquième Edition, Librairie J.-B. Baillière et Fils, Paris, 1953.
- Ye L., C. Y Tang, Chen S., Yang J., Zhang W., One-step extraction of antimony from low-grade stibnite in Sodium Carbonate-Sodium Chloride binary molten salt, Journal of Cleaner Production, 93, 134-139, 2015.
- Hu X., Guo X., He M., Li S., pH-dependent release characteristics of antimony and arsenic from typical antimony-bearing ores, Journal of Environmental Sciences, 44, 171- 179, 2016.
- Wikedzi A., Sandström A., Awe S. A., Recovery of antimony compounds from alkaline sulphide
leachates, International Journal of Mineral Processing, 152, 26-35, 2016.
- Lin H.K., Extraction of antimony by a copper chloride extractant, Hydrometallurgy 73, 283-291, 2004.
- Guo X., Wu Z., He M., Removal of antimony(V) and antimony(III) from drinking water by coagulation–flocculation–sedimentation (CFS), Water Res., 43, 4327–4335, 2009.
- Shokes T.E., Möller G., Removal of dissolved heavy metals from acid rock drainage using iron metal, Environ. Sci. Technol., 33, 282–287, 1998.
- Buschmann J., Canonica S., Sigg L., Photoinduced oxidation of antimony(III) in the presence of humic acid, Environ. Sci. Technol., 39, 5335–5341, 2005.
- Zhu J., Wu F., Pan X., Guo J., Wen D., Removal of antimony from antimony mine flotation wastewater by electrocoagulation with aluminum electrodes, J.Environ. Sci., 23, 1066–1071, 2011.
- Eliaz, N., & Gileadi, E. (2008). Induced Codeposition of Alloys of Tungsten, Molybdenum and Rhenium with Transition Metals. Modern Aspects of Electrochemistry, 191-301.
- Kolbe, F., Mattusch, J., Wennrich, R., Weiss, H., Sorkau, E., Lorenz, W., Daus B., (2012). Analytical investigations of antimony-edta complexes and their use in speciation analysis. Fresenius Environmental Bulletin, 21(11).
- Liu, L., Hu, Z., Cui, Y., Li, B., & Zhou, X. (2010). A facile route to the fabrication of morphology-controlled Sb2O3 nanostructures. Solid State Sciences, 12(5), 882-886.
- Han-ying, J., (1984). Physical chemistry of hydrometallurgy. Beijing: Metallurgical Industry Press, 1984.
- Razeghi, M. (2012). Antimony: Characteristics, Compounds, and Applications. Nova Science Pub., Hauppauge, NY.
- Xin-ling, D., (2012). Research on the hydrolysis equilibrium of antimony trichloride in the Sb3+-Cl--H2O system. China Nonferrous Metallurgy, 41(5), 75-79.
- Bratsch S.G., Standard Electrode Potentials and Temperature Coefficients in Water at 298.15K, Journal of Physical and Chemical Reference Data, 18 (1), 1-21, 1989.
- Van der Pas, V., & Dreisinger, D. (1996). A fundamental study of cobalt cementation by zinc dust in the presence of copper and antimony additives. Hydrometallurgy, 43(1-3), 187-205.
- Shamsuddin, M. (2016). Physical Chemistry of Metallurgical Processes. Hoboken, NJ: John Wiley & Sons.
- Lew, R., (1994). The removal of cobalt from zinc sulphate electrolytes using the copper-antimoney process, in Materials Engineering. The University of British Columbia: Vancouver, Canada.
- Krause, B., Sandenbergh, R. (2015). Optimization of cobalt removal from an aqueous sulfate zinc leach solution for zinc electrowinning. Hydrometallurgy, 155, 132-140.
- Uysal A., Çetiner B.N., Morcalı M.H., Aktaş S., “Antimony Recovery from Various Antimony Solutions and Determination of Optimal Conditons”, 652-661, 2nd International Turkish World Engineering and Science Congress, November 7-10, 2019, Antalya, Türkiye.
- Aktas S., Rhodium recovery from rhodium-containing waste rinsing water via cementation using zinc powder, Hydrometallurgy, 106, 71–75, 2011.
- Farahmand F., Moradkhani D., Safarzadeh M.S., Rashchi F., Optimization and kinetics of the cementation of lead with aluminum powder, Hydrometallurgy 98, 81–85, 2009.
- Aktas S., Silver recovery from spent silver oxide button cells, Hydrometallurgy 104, 106–111, 2010.
- Boyanov B.S., Konareva V.V., Kolev N.K., Purification of zinc sulfate solutions from cobalt and nickel through activated cementation, Hydrometallurgy, 73 (1–2), p.163-168, 2004.
- Bøckman O., Østvold T., Products formed during cobalt cementation on zinc in zinc sulfate electrolytes, Hydrometallurgy, 54 (2–3), p.65-78, 2000.
- Lew R., The removal of cobalt from zinc sulphate electrolytes using the copper-antimony process, Master’s thesis, The University of British Columbia, The Faculty of Graduate Studies, Vancouver, Canada, 1994.
- Wu L., Li Y., Cao H., Zheng G., Copper-promoted cementation of antimony in hydrochloric acid system: A green protocol, Journal of Hazardous Materials, 299, 520–528, 2015.
Metallic antimony recovery via cementation from antimony containing solutions and investigation of its conditions
Yıl 2022,
Cilt: 37 Sayı: 1, 207 - 218, 10.11.2021
Abdullah Uysal
,
Burcu Nilgün Çetiner
Serdar Aktaş
Öz
Besides the most common uses of antimony metal and / or compounds, with the development of solar energy technologies, the need for antimony and its compounds increases and the rapid depletion of primary sources in the world increases the importance of antimony recovery from secondary sources. The recovery method proposed in this study aims to reduce the ionic antimony by oxidation of the more active metal and to produce metallic antimony in powder form as a result of reduction process. Oxide and sulfur based antimony containing ore and concentrate have been treated by various acidic and basic solutions, respectively. But as the recovery rate was too low, the parameters affecting the metallic precipitation of antimony from acidic synthetic antimony solutions which are a secondary source were examined in detail. The physical and chemical properties of antimony metal were determined after examining reaction time, temperature, initial antimony concentration, zinc powder amount and solution pH parameters during cementation process which could affect experimental working conditions. As a result of the experimental studies, using 25 mL of 1000 ppm Sb3+ synthetic solution with the addition of 100 mg of metallic zinc and mixing speed of 60 rpm, recovery efficiency of up to 100% was achieved in a very short time such as 5 minutes and metallic antimony of 99% purity was obtained. When 100% recovery was achieved with zinc of 100 mg in single-stage cementation, the same yield was achieved with the addition of 40% less zinc in two-stage cementation.
Proje Numarası
FEN-C-YLP-170419-0122
Kaynakça
- Freedman, L.D., Doak, G.O., Long, G.G., (1992). Antimony compounds. Kirk-Othmer Encyclopedia of Chemical Technology, 3rd ed., Vol.3, John Wiley & Sons Inc., New York.
- Herbst, K.A., Rose, G., Hanusch, K., Schumann, Wolf, H.U., (1985). Antimony and antimony compounds. Ullmann’s Encyclopedia of Industrial Chemistry, Vol. A3, VCH Publishers.
- Zirngieble, E. (1986). Metalle in der Umwelt. Chemie Ingenieur Technik, 58(8), 698-698.
- Jha, M., Kumar, V., & Singh, R. (2001). Review of hydrometallurgical recovery of zinc from industrial wastes. Resources, Conservation and Recycling, 33(1), 1-22.
- Chang, F., Lo, S., & Ko, C. (2007). Recovery of copper and chelating agents from sludge extracting solutions. Separation and Purification Technology, 53(1), 49-56.
- Nosier, S., Sallam, S., (2000). Removal of lead ions from wastewater by cementation on a gas-sparged zinc cylinder. Separation and Purification Technology, 18(2), 93-101.
- El Batouti, M. (2003). Cementation reactions in the presence of nitrogen compounds. Journal of Colloid and Interface Science, 263(2), 548-553.
- Dib, A., & Makhloufi, L. (2004). Cementation treatment of copper in wastewater: mass transfer in a fixed bed of iron spheres. Chemical Engineering and Processing: Process Intensification, 43(10), 1265-1273.
- Fouad, O., & Abdel Basir, S. (2005). Cementation-induced recovery of self-assembled ultrafine copper powders from spent etching solutions of printed circuit boards. Powder Technology, 159(3), 127-134.
- Ettler V., Mihaljevic M., Sebek O., Nechutny Z., Antimony availability in highly polluted soils and sediments -A comparison of single extractions, Chemosphere 68, 455-463, 2007.
- Carré P., “Précis de Technologie et de Chimie Industrielle, Tome Deuxième, Cinquième Edition, Librairie J.-B. Baillière et Fils, Paris, 1953.
- Ye L., C. Y Tang, Chen S., Yang J., Zhang W., One-step extraction of antimony from low-grade stibnite in Sodium Carbonate-Sodium Chloride binary molten salt, Journal of Cleaner Production, 93, 134-139, 2015.
- Hu X., Guo X., He M., Li S., pH-dependent release characteristics of antimony and arsenic from typical antimony-bearing ores, Journal of Environmental Sciences, 44, 171- 179, 2016.
- Wikedzi A., Sandström A., Awe S. A., Recovery of antimony compounds from alkaline sulphide
leachates, International Journal of Mineral Processing, 152, 26-35, 2016.
- Lin H.K., Extraction of antimony by a copper chloride extractant, Hydrometallurgy 73, 283-291, 2004.
- Guo X., Wu Z., He M., Removal of antimony(V) and antimony(III) from drinking water by coagulation–flocculation–sedimentation (CFS), Water Res., 43, 4327–4335, 2009.
- Shokes T.E., Möller G., Removal of dissolved heavy metals from acid rock drainage using iron metal, Environ. Sci. Technol., 33, 282–287, 1998.
- Buschmann J., Canonica S., Sigg L., Photoinduced oxidation of antimony(III) in the presence of humic acid, Environ. Sci. Technol., 39, 5335–5341, 2005.
- Zhu J., Wu F., Pan X., Guo J., Wen D., Removal of antimony from antimony mine flotation wastewater by electrocoagulation with aluminum electrodes, J.Environ. Sci., 23, 1066–1071, 2011.
- Eliaz, N., & Gileadi, E. (2008). Induced Codeposition of Alloys of Tungsten, Molybdenum and Rhenium with Transition Metals. Modern Aspects of Electrochemistry, 191-301.
- Kolbe, F., Mattusch, J., Wennrich, R., Weiss, H., Sorkau, E., Lorenz, W., Daus B., (2012). Analytical investigations of antimony-edta complexes and their use in speciation analysis. Fresenius Environmental Bulletin, 21(11).
- Liu, L., Hu, Z., Cui, Y., Li, B., & Zhou, X. (2010). A facile route to the fabrication of morphology-controlled Sb2O3 nanostructures. Solid State Sciences, 12(5), 882-886.
- Han-ying, J., (1984). Physical chemistry of hydrometallurgy. Beijing: Metallurgical Industry Press, 1984.
- Razeghi, M. (2012). Antimony: Characteristics, Compounds, and Applications. Nova Science Pub., Hauppauge, NY.
- Xin-ling, D., (2012). Research on the hydrolysis equilibrium of antimony trichloride in the Sb3+-Cl--H2O system. China Nonferrous Metallurgy, 41(5), 75-79.
- Bratsch S.G., Standard Electrode Potentials and Temperature Coefficients in Water at 298.15K, Journal of Physical and Chemical Reference Data, 18 (1), 1-21, 1989.
- Van der Pas, V., & Dreisinger, D. (1996). A fundamental study of cobalt cementation by zinc dust in the presence of copper and antimony additives. Hydrometallurgy, 43(1-3), 187-205.
- Shamsuddin, M. (2016). Physical Chemistry of Metallurgical Processes. Hoboken, NJ: John Wiley & Sons.
- Lew, R., (1994). The removal of cobalt from zinc sulphate electrolytes using the copper-antimoney process, in Materials Engineering. The University of British Columbia: Vancouver, Canada.
- Krause, B., Sandenbergh, R. (2015). Optimization of cobalt removal from an aqueous sulfate zinc leach solution for zinc electrowinning. Hydrometallurgy, 155, 132-140.
- Uysal A., Çetiner B.N., Morcalı M.H., Aktaş S., “Antimony Recovery from Various Antimony Solutions and Determination of Optimal Conditons”, 652-661, 2nd International Turkish World Engineering and Science Congress, November 7-10, 2019, Antalya, Türkiye.
- Aktas S., Rhodium recovery from rhodium-containing waste rinsing water via cementation using zinc powder, Hydrometallurgy, 106, 71–75, 2011.
- Farahmand F., Moradkhani D., Safarzadeh M.S., Rashchi F., Optimization and kinetics of the cementation of lead with aluminum powder, Hydrometallurgy 98, 81–85, 2009.
- Aktas S., Silver recovery from spent silver oxide button cells, Hydrometallurgy 104, 106–111, 2010.
- Boyanov B.S., Konareva V.V., Kolev N.K., Purification of zinc sulfate solutions from cobalt and nickel through activated cementation, Hydrometallurgy, 73 (1–2), p.163-168, 2004.
- Bøckman O., Østvold T., Products formed during cobalt cementation on zinc in zinc sulfate electrolytes, Hydrometallurgy, 54 (2–3), p.65-78, 2000.
- Lew R., The removal of cobalt from zinc sulphate electrolytes using the copper-antimony process, Master’s thesis, The University of British Columbia, The Faculty of Graduate Studies, Vancouver, Canada, 1994.
- Wu L., Li Y., Cao H., Zheng G., Copper-promoted cementation of antimony in hydrochloric acid system: A green protocol, Journal of Hazardous Materials, 299, 520–528, 2015.