Araştırma Makalesi
BibTex RIS Kaynak Göster

Farklı bağıl yoğunluklardaki Inconel 718 ve Ti6Al4V biyomedikal parçaların seçici lazer ergitme (SLE) metoduyla üretiminin simülasyonu

Yıl 2022, Cilt: 37 Sayı: 1, 469 - 484, 10.11.2021
https://doi.org/10.17341/gazimmfd.934143

Öz

Metal eklemeli imalatta en yaygın kullanılan alaşımlar olan Inconel 718 ve Ti6Al4V otomotiv, uzay-uçak, savunma sanayii, biyomedikal gibi bir çok alandaki uygulamalarda tercih edilmektedirler. Bilindiği üzere, fonksiyonel hafifletilmiş parçalar, hafif olmalarına karşın sergilemiş oldukları yüksek spesifik dayanımdan dolayı araştırmacıların ilgi odağı haline gelmiştir. Artan ilgilerin bir sonucu olarak da üzerine gelen yükü homojen dağıtma, yükü ve sesi iyi düzeyde absorbe etme gibi üstün özelliklere sahip olan hafifletilmiş parçaların yapılan tasarımı katman katman gerçek ürüne dönüştüren eklemeli imalat (Eİ) teknolojisi ile üretilme fikri ön plana çıkmıştır. Seçici lazer ergitme (SLE) ve elektron ışın ergitme (EIE) gibi Eİ yöntemlerinin geleneksel imalat yöntemlerine nazaran bir çok avantajı olmasına ragmen, üretim sırasında parçada meydana gelen kalıntı gerilim oluşumları, yüksek yüzey pürüzlülüğü ve distorsiyonlar nedeniyle, ilgili imalat yöntemleri geliştirilmeye ihtiyaç duymaktadır. Bu bağlamda, eklemeli imal edilen hücresel yapıların deneysel olarak kalıntı gerilim ve distorsiyon ölçümleri oldukça zor ve zaman alıcıdır. Bu çalışmada ise, biyomedikal alanda iskele ve implant çekirdek yapısı olarak kullanılan hücresel yapılar ele alınmıştır. İmplantın yükü kemiğe oranla daha fazla taşıması nedeniyle kemiğin güç kaybetmesi anlamına gelen stress shielding olgusunu minimize eden kemik-implant arasındaki osseointegrasyonu geliştiren bu hücresel yapılar % 100, % 73,4 ve % 42,6 doluluk oranı ile tasarlanmıştır. Bu hücresel yapıların Inconel 718 ve Ti6Al4V malzemelerden SLE metoduyla üretimi sırasında meydana gelen kalıntı gerilmeler (σx, σy, ve σz), distorsiyonlar, plastik birim şekil değişimleri ve meydana gelen maksimum sıcaklık değerleri Eİ simülasyon programı Amphyon 2021 ile tespit edilmiştir. Elde edilen sonuçlar göstermektedir ki, Ti6Al4V parçalar, Inconel 718 parçalara göre daha fazla deplasman göstermektedir. Çatlak oluşumunun hangi bölgede gerçekleşebileceğine dair öngörü sağlayan plastik birim şekil değişimleri ise parçaların alt köşe bölgelerinde, destek yapının bittiği, asıl parçanın yer aldığı bölgelerde lokalize olmuştur. Ayrıca, parçalardaki maksimum sıcaklık değerleri imalat yüksekliğinin artmasıyla birlikte artış göstermekte ve her iki malzeme türü için de doluluk oranları % 73,4 ve % 42,6 olan parçalarda kritik bir imalat yüksekliğinden sonra tam dolu parçaya nazaran daha fazla maksimum sıcaklık değerleri gözlemlenmiştir.

Kaynakça

  • 1. Kumar R., Kumar M., Chohan J.S., The role of additive manufacturing for biomedical applications: A critical review. Journal of Manufacturing Processes, 64, 828-850, 2021. Doi: 10.1016/j.jmapro.2021.02.022.
  • 2. Baghi A.D., Nafisi S., Hashemi R., Heidepriem H.E., Ghomashchi R., Experimental realization of build orientation effects on the mechanical properties of truly as-built Ti-6Al-4V SLM parts, Journal of Manufacturing Processes, 64, 140-452. 2021, Doi: 10.1016/j.jmapro.2021.01.027.
  • 3. Nadammal N., Cabeza S.A., Mishurova T., Thiede T., Kromm A., Seyfert C., Farahbod L., Haberland C., Schneider J.A., Portella P.D., Bruno G., Effect of hatch length on the development of microstructure, texture and residual stresses in selective laser melted superalloy Inconel 718, Mater. Des., 134, 139–150, 2017.
  • 4. Dallago M., Zanini F., Carmignato S., Pasini D., Benedetti M., Effect of the geometrical defectiveness on the mechanical properties of SLM biomedical Ti6Al4V lattices, Procedia Struct. Integrity, 13, 161-167, 2018.
  • 5. Alabort E., Barba D., Reed R.C., Design of metallic bone by additive manufacturing, Scr. Mater., 164, 110-114, 2019.
  • 6. Yan C., Hao L., Hussein A., Young P., Raymont D., Advanced lightweight 316L stainless steel cellular lattice structures fabricated via selective laser melting, Mater. Des., 55, 533-541, 2014.
  • 7. Wang J., Zhou X.L., Li J., Brochu M., Zhao Y.F., Microstructures and properties of SLM-manufactured Cu-15Ni-8Sn alloy, Additive Manufacturing, 31, 100921, 2020.
  • 8. Qi H., Azer M., Ritter A., Studies of standard heat treatment effects on microstructure and mechanical properties of laser net shape manufactured Inconel 718, Metall. Mater. Trans. A, 40(10), 2410–2422, 2009.
  • 9. Parimi L.L., Attallah M.M., Gebelin J.C., Reed R.C., Direct laser fabrication of Inconel 718: effects on distortion and microstructure, Superalloys, 12th Int. Symp. on Superalloys, 7 Springs, PA, September 09–13, 511–519, 2019.
  • 10. Hosseini E., Popovich V.A., A review of mechanical properties of additively manufactured Inconel 718, Additive Manufacturing, 30, 100877, 2019.
  • 11. Soller S., Barata A., Beyer S., Dahlhaus A., Guichard D., Humbert E., Kretschmer J., Zeiss W., Selective laser melting (SLM) of Inconel 718 and stainless steel injectors for liquid rocket engines, Space Propulsion Conference, Rome, Italy, 1-10, May 02–06, 2016.
  • 12. Soller S., Behr R., Beyer S., Laithier F., Lehmann M., Preuss A., Salapete R., Design and testing of liquid propellant injectors for additive manufacturing, 7th European Conference for Aerospace Sciences (EUCASS), Milan, Italy, 1-10, July 03–06, 2017.
  • 13. Donachie M.J., Titanium: A Technical Guide, second ed. ASM International, Materials Park, OH, 2000.
  • 14. Inagaki, I., Takechi T., Shirai Y., Ariyasu N., Application and features of titanium forthe aerospace industry, Nippon Steel & Sumitomo Metal Technical Report, 22–27, 2014.
  • 15. Uhlmann E., Kersting R., Klein T.B., Cruz M.F., Borille A.V., Additive manufacturing of titanium alloy for aircraft components, Proc. CIRP, 35, 55–60, 2015.
  • 16. Gurrappa I., Characterization of titanium alloy Ti-6Al-4V for chemical, marine and industrial applications, Mater. Charact., 51(2), 131–139, 2003.
  • 17. Abdullah N.A.Z., Sani M.S.M., Salwani M.S., Husain N.A., A review on crashworthiness studies of crash box structure, Thin-Walled Structures, 153, 106795, 2020.
  • 18. Emmelmann C., Scheinemann P., Munsch M., Seyda V., Laser additive manufacturing of modified implant surfaces with osseointegrative characteristics, Phys. Procedia, 12, 375–384, 2011.
  • 19. Parry L., Ashcroft L.A., Wildman R.D., Understanding the effect of laser scan strategy on residual stress in selective laser melting through thermo-mechanical simulation, Addit. Manuf., 12, 1–15, 2016.
  • 20. Formanoir C.D., Brulard A., Vivès S., Martin G., Prima F., Michotte S., Rivière E., Dolimont A., Godet S., A strategy to improve the work-hardening behavior of Ti–6Al–4V parts produced by additive manufacturing, Mater. Res. Lett., 5(3), 201–208, 2017.
  • 21. Prasad A.V.S.R., Ramji K., Datta G.L., An experimental study of wire EDM on Ti-6Al 4V alloy, Proc. Mater. Sci., 5, 2567–2576, 2014.
  • 22. R. Huang, M. Riddle, D. Graziano, J. Warren, S. Das, S. Nimbalkar, J. Cresko, E. Masanet, Energy and emissions saving potential of additive manufacturing: the case of lightweight aircraft components, J. Clean. Prod., 135, 1559–1570, 2016.
  • 23. Kaur I., Singh P., Critical evaluation of additively manufactured metal lattices for viability in advanced heat exhangers, International Journal of Heat and Mass Transfer, 168, 120858, 2021.
  • 24. Kolken H.M.A., Jonge C.P.D., Sloten T.V.D., Garcia A.F., Pouran B., Willemsen K., Weinans H., Zadpoor A.A., Additively manufactured space-filling meta-implants, Acta Biomaterialia, 125, 345-357, 2021.
  • 25. Kolken H.M.A., Janbaz S., Leeflang S.M.A., Lietaert K., Weinans H.H., Zadpoor A.A., Rationally designed meta-implants: A combination of auxetic and conventional meta-biomaterials, Materials Horizons, 5(1), 28-35, 2018.
  • 26. Gu D., Yang J., Lin K., Ma C., Yuan L., Hongmei Z., Guo M., Zhang H., Compression performance and mechanism of superimposed sine-wave structures fabricated by selective laser melting, Materials & Design, 198, 109291, 2021.
  • 27. Ferro C.G., Varetti S., Pasquale G.D., Maggiore P., Lattice structured impact absorber with embedded anti-icing system for aircraft wings fabricated with additive SLM process, Mater.today: Communications, 15, 185-189, 2018.
  • 28. Zaharia S.M., Lancea C., Chicos L.A., Pop M.A., Caputo G., Serra E., Mechanical properties and corrosion behaviour of 316L stainless steel honeycomb cellular cores manufactured by selective laser melting, Transactions of Famena XLI-4, 11-24, 2017.
  • 29. Ergene B., Eklemeli imalat ile titanyum ve polimer esaslı malzemelerden üretilen hücresel yapıların mekanik davranışlarının deneysel olarak araştırılması, Doktora Tezi, Isparta Uygulamalı Bilimler Üniversitesi, Fen Bilimleri Enstitüsü, Isparta, 2020.
  • 30. Lei H., Li C., Meng J., Zhou H., Liu Y., Zhang X., Wang P., Fang D., Evaluation of compressive properties of SLM-fabricated multi-layer lattice structures by experimental test and μ-CT-based finite element analysis, Materials & Design, 169, 107685, 2019.
  • 31. Lee W., Jeong Y., Yoo J., Huh H., Park S.J., Park S.H., Yoon J., Effect of auxetic structures on crash behavior of cylindrical tube, Composite Structures, 208, 836-846, 2019.
  • 32. Popovich V.A., Borisov E.V., Heurtebise V., Riemslag T., Popovich A.A., Sufliarov V.S., Creep and Thermomechanical Fatigue of Functionally Graded Inconel 718 Produced by Additive Manufacturing, 147th Annual Meeting & Exhibition Supplemental Proceedings, 85-97, 2018.
  • 33. Hazeli K., Babamiri B.B., Indeck J., Minor A., Askari H., Microstructure-topology relationship effects on the quasi-static anddynamic behavior of additively manufactured lattice structures, Materials & Design, 176, 107826, 2019.
  • 34. Xiong Y.Z., Gao R.N., Zhang H., Dong L.L., Li J.T., Li X., Rationally designed functionally graded porous Ti6Al4V scaffolds with high strength and toughness built via selective laser melting for load-bearing orthopedic applications, Journal of the Mechanical Behavior of Biomedical Materials, 104, 103673, 2020.
  • 35. Kas M., Yılmaz O., Radially graded porous structure design for laser powder bed fusion additive manufacturing of Ti-6Al-4V alloy, Journal of Materials Processing Technology, 296, 117186, 2021.
  • 36. Periane S., Duchosal A., Vaudreuil S., Chibane H., Morandeau A., Xavior M.A., Leroy R., Influence of heat treatment on the fatigue resistance of Inconel 718 fabricated by selective laser melting (SLM), Materialstoday: Proceedings, In press. Doi: 10.1016/j.matpr.2021.02.447.
  • 37. Nadammal N., Cabeza S., Mishurova T., Thiede T., Kromm A., Seyfert C., Farahbod L., Haberland C., Schneider J.A., Portella P.D., Bruno G., Effect of hatch length on the development of microstructure, texture and residual stresses in selective laser melted superalloy Inconel 718, Mater. Des. 134, 139–150, 2017.
  • 38. Vayssette B., Saintier N., Brugger C., May M.E., Pessard E., Surface roughness of Ti-6Al-4V parts obtained by SLM and EBM: Effect on the High Cycle Fatigue life. Procedia Engineering, 213, 89-97, 2018. Doi: 10.1016/j.proeng.2018.02.010.
  • 39. Lu Y., Wu S., Gan Y., Huang T., Yang C., Junjie L., Lin J., Study on the microstructure, mechanical property and residual stress of SLM Inconel-718 alloy manufactured by differing island scanning strategy, Optics Laser Technol., 75, 197–206, 2015.
  • 40. Sames W.J., Medina F., Peter W.H., Babu S.S., Dehoff R.R., Effect of process control and powder quality on Inconel 718 produced using electron beam melting, 8th International Symposium on Superalloy 718 and Derivatives, 409–423, 2014.
  • 41. Mukherjee T., Zhang W., DebRoy T., An improved prediction of residual stresses and distortion in additive manufacturing, Comput. Mater. Sci., 126, 360–372, 2017.
  • 42. Zhang D., Niu W., Cao X., Liu Z., Effect of standard heat treatment on the microstructure and mechanical properties of selective laser melting manufactured Inconel 718 superalloy, Mater. Sci. Eng. A, 644, 32–40, 2015.
  • 43. Harrison N.J., Todd I., Mumtaz K., Reduction of micro-cracking in nickel superalloys processed by selective laser melting: a fundamental alloy design approach, Acta Mater., 94, 59–68, 2015.
  • 44. Yiğit O., Dilmeç M., Halkacı S., Tabaka kaldırma yöntemi ile kalıntı gerilmelerin ölçülmesi ve diğer yöntemlerle karşılaştırılması, Mühendis ve Makine, 49(579), 20-27, 2008.
  • 45. Yasa E., Poyraz Ö., Investigation of residual stresses by micro indentation in selective laser melting, Journal of the Faculty of Engineering and Architecture of Gazi University, 36(2), 1029-1040, 2021.
  • 46. Kayacan M.Y., Seçici Lazer Ergitme (SLE) ile İmalatta Geometrik Parametrelerin Sıcaklık Dağılımı, Kalıntı Gerilme ve Deformasyona Etkisinin Araştırılması, Doktora Tezi, Isparta Uygulamalı Bilimler Üniversitesi, Fen Bilimleri Enstitüsü, Isparta, 2020.
  • 47. Nesli S., Yilmaz O., Surface characteristics of laser polished Ti-6Al-4V parts produced by electron beam melting additive manufacturing process, The International Journal of Advanced Manufacturing Technology, 114, 271-289, 2021. Doi: 10.1007/s00170-021-06861-6.
  • 48. Ermergen T., Taylan F., Review on Surface Quality Improvement of Additively Manufactured Metals by Laser Polishing, Arabian Journal for Science and Engineering, 2021, Doi: 10.1007/s13369-021-05658-9.
  • 49. Kayacan M.C., Delikanlı Y.E., Duman B., Özsoy K., Ti6Al4V toz alaşımı kullanılarak sls ile üretilen geçişli (değişken) gözenekli numunelerin mekanik özelliklerinin incelenmesi, Journal of the Faculty of Engineering and Architecture of Gazi University, 33(1), 127-143, 2018.
  • 50. Crupi V., Kara E., Epasto G., Guglielmino E., Aykul H. Static behavior of lattice structures produced via direct metal laser sintering technology, Materials & Design, 135, 246-256, 2017.
  • 51. Peter N., Pitts Z., Thompson S., Saharan A., Benchmarking Build Simulation Software for Laser Powder Bed Fusion of Metals, Additive Manufacturing, 36, 101531, 2020.
  • 52. Galerati M., Residual Stress Prediction of Additive Manufactured Electric Motor Cores Using Finite Element Analysis, Master Thesis, Politecnico Di Torino McMASTER UNIVERSITY, 2020.
  • 53. Mayer T., Brandle G., Schönenberger A., Eberlein R., Simulation and validation of residual deformations in additive manufacturing of metal parts, Heliyon, 6, e03987, 2020.
  • 54. Soylemez E., Koç E., Coşkun M., Thermo‑mechanical simulations of selective laser melting for AlSi10Mg alloy to predict the part‑scale deformations, Progress in Additive Manufacturing, 4, 465-478, 2019.
  • 55. Dobrzanski L.A., Danikiewicz A.D.D., Gawel T.G., Franczak A.A., Selective Laser Sintering and Melting of pristine titanium and titanium Ti6Al4V alloy powders and selection of chemical environment for etching of such materials, Archives of Metallurgy and Materials, 60(3), 2039-2045, 2015.
  • 56. Rahmani R., Rosenberg M., Ivask A., Kollo L., Comparison of Mechanical and Antibacterial Properties of TiO2/Ag Ceramics and Ti6Al4V-TiO2/Ag Composite Materials Using Combined SLM-SPS Techniques, Metals, 9(8), 1-13, 2019.
  • 57. Eos M400-4. https://www.eos.info/en/additive-manufacturing/3d-printing-metal/eos-metal-systems/eos-m-400-4. Erişim tarihi Nisan 12, 2021.
  • 58. Kelly C.N., Francovich J., Julmi S., Safranski D., Guldberg R.E., Maier H.J., Gall K., Fatigue behavior of As-built selective laser melted titanium scaffolds with sheet-based gyroid microarchitecture for bone tissue engineering, Acta Biomaterialia, 94, 610-626, 2019.
  • 59. Liang H., Yang Y., Xie D., Li L., Mao N., Wang C., Tian Z., Jiang Q., Shen L., Trabecular-like Ti-6Al-4V scaffolds for orthopedic: fabrication by selective laser melting and in vitro biocompatibility, Journal of Materials Science & Technology, 35, 7, 1284-1297, 2019.
  • 60. Ginestra P., Ferraro R.M., Hauber K.Z., Abeni A., Giliani S., Ceretti E., Selective Laser Melting and Electron Beam Melting of Ti6Al4V for Orthopedic Applications: A Comparative Study on the Applied Building Direction, Materials, 13, 1-22, 2020.
  • 61. Kaynak Y., Tascioglu E., Post-processing effects on the surface characteristics of Inconel 718 alloy fabricated by selective laser melting additive manufacturing, Progress in Additive Manufacturing, 5, 221-234, 2020.
  • 62. Poyraz Ö., Kuşhan M.C., Investigation of the effect of different process parameters for laser additive manufacturing of metals. Journal of the Faculty of Engineering and Architecture of Gazi University 33(2), 729-742, 2018.
  • 63. Keller N., Ploshikhin V., New Method for fast predictions of residual stress and distortion of AM parts, Sffsymposium.engr.utexas.edu, 2014. https://www.semanticscholar.org/paper/NEW-METHOD-FOR-FAST-PREDICTIONS-OF-RESIDUAL-STRESS-Keller-Ploshikhin/6c4cad8045bdaac3d47b9c63ddef3a81c510d28a.
  • 64. Hill M., Nelson D.V., The Inherent Strain Method For Residual Stress Determination And Its Application To A Long Welded Joint, ASME Press. Vessels Pip. 318, 1999.
  • 65. Ma N., Nakacho K., Ohta T., Ogawa N., Maekawa A., Huang H., Murakawa H., Inherent Strain Method for Residual Stress Measurement and Welding Distortion Prediction, in: 2016: p. V009T13A001. doi:10.1115/OMAE2016-54184
  • 66. Ueda Y., Fukuda K., Nakacho K., Endo S., A New Measuring Method of Residual Stresses with the Aid of Finite Element Method and Reliability of Estimated Values, Journal of the Society of Naval Architects of Japan, 1975, 499-507, 1975. doi:http://dx.doi.org/10.2534/jjasnaoe1968.1975.138_499.
  • 67. Bugatti M., Semeraro Q., Limitations of the inherent strain method in simulating powder bed fusion processes, Additive Manufacturing, 23, 329–346, 2018. Doi:10.1016/j.addma.2018.05.041.
  • 68. Mugwagwa L., Dimitrov D., Matope S., Yadroitsev I., Influence of process parameters on residual stress related distortions in selective laser melting, Procedia Manufacturing, 21, 92-99, 2018.
  • 69. Ahmad B., Veen S.O.V.D., Fitzpatrick M.E., Guo H., Residual stress evaluation in selective-laser-melting additively manufactured titanium (Ti-6Al-4V) and inconel 718 using the contour method and numerical simulation, Additive Manufacturing, 22, 571-582, 2018.
  • 70. Poyraz Ö., Kuşhan M.C., Residual stress-induced distortions in laser powder bed additive manufacturing of Nickel-based superalloys, Journal of Mechanical Engineering, 65, 343-350, 2019.
  • 71. Afrazov S., Denmark W.A.D., Toralles B.L., Holloway A., Yaghi A., Distortion and prediction and compensation in selective laser melting, Additive Manufacturing, 17, 15-22, 2017.
  • 72. Li C., Liu J.F., Guo Y.B., Prediction of Residual Stress and Part Distortion in Selective Laser Melting, Procedia CIRP, 45, 171-174, 2016.
  • 73. Romero C., Yang F., Bolzoni L., Fatigue and fracture properties of Ti alloys from powder-based processes – A review, International Journal of Fatigue, 117, 407-419, 2018.
  • 74. Vilaro T., Colin C., Bartout J.D., As-fabricated and heat-treated microstructures of the Ti-6Al-4V alloy processed by selective laser melting, Metallurgical and Materials Transactions A, 42, 3190-3199, 2011.
  • 75. Singla A.K., Banerjee M., Sharma A., Singh J., Bansal A., Gupta M.K., Khanna N., Shahi A.S., Goyal D.K., Selective laser melting of Ti6Al4V alloy: Process parameters, defects and post-treatments, Journal of Manufacturing Processes, 64, 161-187, 2021.
  • 76. Lu Y.J., Wu S.Q., Gan Y.L., Huang T.T., Yang C.G., Lin J.J., Lin J.X., Study on the microstructure, mechanical property and residual stress of SLM Inconel-718 alloy manufactured by differing island scanning strategy, Opt. Laser Technol., 75, 197–206, 2015.
  • 77. Liu Y., Yang Y., Wang D., A study on the residual stress during selective laser melting (SLM) of metallic powder, The International Journal of Advanced Manufacturing Technology, 87, 647-656, 2016.
  • 78. Kashapov R.N., Kashapov L.N., Kashapov N.F., Formation of cracks in the selective laser melting of objects from powdered stainless steel 17-4 PH, 2017 IOP Conf. Ser.: Mater. Sci. Eng. 240, 012074, 2017.
  • 79. Martinez S., Ortega N., Celentano D., Egea A.J.S., Ukar E., Lamikiz A., Analysis of the part distortions for Inconel 718 SLM: A case study on the NIST test artifact, Materials, 13, 5087, 2020.
  • 80. Mishurova T., Cabeza S., Thiede T., Nadammal N., Kromm A., Klaus M., Genzel C., Haberland C., Bruno G., The Influence of the Support Structure on Residual Stress and Distortion in SLM Inconel 718 Parts, Metallurgical and Materials Transactions A, 49, 3038-3046, 2018.
  • 81. Chen Y., Sun H., Li Z., Wu Y., Xiao Y., Chen Z., Zhong S., Wang H., Strategy of Residual Stress Determination on Selective Laser Melted Al Alloy Using XRD, Materials, 13(2), 1-11, 2020.
  • 82. Mercelis P., Kruth J.P., Residual stresses in selective laser sintering and selective laser melting, Rapid Prototyp. J., 12, 254–265, 2006.
  • 83. Anderson L.S., Venter A.M., Vrancken B., Marais D., van Humbeeck J., Becker T.H., Investigating the Residual Stress Distribution in Selective Laser Melting Produced Ti-6Al-4V using Neutron Diffraction, Mater. Res. Proc., 4, 73–78, 2018.
  • 84. Mirkoohi E., Ning J., Bocchini P., Fergani O., Chiang K.N., Liang S.Y., Thermal Modeling of Temperature Distribution in Metal Additive Manufacturing Considering Effects of Build Layers, Latent Heat, and Temperature-Sensitivity of Material Properties, J. Manuf. Mater. Process. 2, 63, 1-19, 2018.

Simulation of the production of Inconel 718 and Ti6Al4V biomedical parts with different relative densities by selective laser melting (SLM) method

Yıl 2022, Cilt: 37 Sayı: 1, 469 - 484, 10.11.2021
https://doi.org/10.17341/gazimmfd.934143

Öz

Inconel 718 and Ti6Al4V which are the most widely used alloys in metal additive manufacturing, are preferred in applications in many fields such as automotive, aerospace, defense industry and biomedical. As it is known, functional lightened parts have become the focus of attention of researchers due to the high specific strength they exhibit, despite their lightness. As a result of the increasing interest, the idea of manufacturing lightened parts, which have superior properties such as homogeneous distribution of the load and good absorption of load and sound, has come to the fore with the additive manufacturing (AM) technology, which transforms the design into a real product layer by layer. Although AM methods such as selective laser melting (SLM) and electron beam melting (EBM) have many advantages over traditional manufacturing methods, the related manufacturing methods need to be developed due to residual stresses, high surface roughness and distortions that occur in the part during manufacturing. In this context, experimental residual stress and distortion measurements of additively manufactured cellular structures are very difficult and time consuming. In this study, cellular structures used as scaffold and implant core structures in the biomedical field are discussed. These cellular structures, which improve osseointegration between bone-implant, which minimizes the phenomenon of stress shielding, which means the loss of strength of the bone, because the implant carries more load than the bone, is designed with 100%, 73.4% and 42.6% infill rate. The residual stresses (σx, σy, and σz), distortions, plastic strains and the maximum temperature values that occur during the production of these cellular structures from Inconel 718 and Ti6Al4V materials with the SLM method were determined by the AM simulation program Amphyon 2021. The results obtained show that Ti6Al4V parts have more displacement than Inconel 718 parts. Plastic strains which provide prediction about where the crack formation may occur, are localized in the lower corner regions of the parts, where the support structure ends and where the main part is located. In addition, the maximum temperature values of the parts increase with the increase of the building height, and for both material types, the parts with 73.4% and 42.6% infill rates have been observed to have higher maximum temperature values after a critical building height compared to the full part.

Kaynakça

  • 1. Kumar R., Kumar M., Chohan J.S., The role of additive manufacturing for biomedical applications: A critical review. Journal of Manufacturing Processes, 64, 828-850, 2021. Doi: 10.1016/j.jmapro.2021.02.022.
  • 2. Baghi A.D., Nafisi S., Hashemi R., Heidepriem H.E., Ghomashchi R., Experimental realization of build orientation effects on the mechanical properties of truly as-built Ti-6Al-4V SLM parts, Journal of Manufacturing Processes, 64, 140-452. 2021, Doi: 10.1016/j.jmapro.2021.01.027.
  • 3. Nadammal N., Cabeza S.A., Mishurova T., Thiede T., Kromm A., Seyfert C., Farahbod L., Haberland C., Schneider J.A., Portella P.D., Bruno G., Effect of hatch length on the development of microstructure, texture and residual stresses in selective laser melted superalloy Inconel 718, Mater. Des., 134, 139–150, 2017.
  • 4. Dallago M., Zanini F., Carmignato S., Pasini D., Benedetti M., Effect of the geometrical defectiveness on the mechanical properties of SLM biomedical Ti6Al4V lattices, Procedia Struct. Integrity, 13, 161-167, 2018.
  • 5. Alabort E., Barba D., Reed R.C., Design of metallic bone by additive manufacturing, Scr. Mater., 164, 110-114, 2019.
  • 6. Yan C., Hao L., Hussein A., Young P., Raymont D., Advanced lightweight 316L stainless steel cellular lattice structures fabricated via selective laser melting, Mater. Des., 55, 533-541, 2014.
  • 7. Wang J., Zhou X.L., Li J., Brochu M., Zhao Y.F., Microstructures and properties of SLM-manufactured Cu-15Ni-8Sn alloy, Additive Manufacturing, 31, 100921, 2020.
  • 8. Qi H., Azer M., Ritter A., Studies of standard heat treatment effects on microstructure and mechanical properties of laser net shape manufactured Inconel 718, Metall. Mater. Trans. A, 40(10), 2410–2422, 2009.
  • 9. Parimi L.L., Attallah M.M., Gebelin J.C., Reed R.C., Direct laser fabrication of Inconel 718: effects on distortion and microstructure, Superalloys, 12th Int. Symp. on Superalloys, 7 Springs, PA, September 09–13, 511–519, 2019.
  • 10. Hosseini E., Popovich V.A., A review of mechanical properties of additively manufactured Inconel 718, Additive Manufacturing, 30, 100877, 2019.
  • 11. Soller S., Barata A., Beyer S., Dahlhaus A., Guichard D., Humbert E., Kretschmer J., Zeiss W., Selective laser melting (SLM) of Inconel 718 and stainless steel injectors for liquid rocket engines, Space Propulsion Conference, Rome, Italy, 1-10, May 02–06, 2016.
  • 12. Soller S., Behr R., Beyer S., Laithier F., Lehmann M., Preuss A., Salapete R., Design and testing of liquid propellant injectors for additive manufacturing, 7th European Conference for Aerospace Sciences (EUCASS), Milan, Italy, 1-10, July 03–06, 2017.
  • 13. Donachie M.J., Titanium: A Technical Guide, second ed. ASM International, Materials Park, OH, 2000.
  • 14. Inagaki, I., Takechi T., Shirai Y., Ariyasu N., Application and features of titanium forthe aerospace industry, Nippon Steel & Sumitomo Metal Technical Report, 22–27, 2014.
  • 15. Uhlmann E., Kersting R., Klein T.B., Cruz M.F., Borille A.V., Additive manufacturing of titanium alloy for aircraft components, Proc. CIRP, 35, 55–60, 2015.
  • 16. Gurrappa I., Characterization of titanium alloy Ti-6Al-4V for chemical, marine and industrial applications, Mater. Charact., 51(2), 131–139, 2003.
  • 17. Abdullah N.A.Z., Sani M.S.M., Salwani M.S., Husain N.A., A review on crashworthiness studies of crash box structure, Thin-Walled Structures, 153, 106795, 2020.
  • 18. Emmelmann C., Scheinemann P., Munsch M., Seyda V., Laser additive manufacturing of modified implant surfaces with osseointegrative characteristics, Phys. Procedia, 12, 375–384, 2011.
  • 19. Parry L., Ashcroft L.A., Wildman R.D., Understanding the effect of laser scan strategy on residual stress in selective laser melting through thermo-mechanical simulation, Addit. Manuf., 12, 1–15, 2016.
  • 20. Formanoir C.D., Brulard A., Vivès S., Martin G., Prima F., Michotte S., Rivière E., Dolimont A., Godet S., A strategy to improve the work-hardening behavior of Ti–6Al–4V parts produced by additive manufacturing, Mater. Res. Lett., 5(3), 201–208, 2017.
  • 21. Prasad A.V.S.R., Ramji K., Datta G.L., An experimental study of wire EDM on Ti-6Al 4V alloy, Proc. Mater. Sci., 5, 2567–2576, 2014.
  • 22. R. Huang, M. Riddle, D. Graziano, J. Warren, S. Das, S. Nimbalkar, J. Cresko, E. Masanet, Energy and emissions saving potential of additive manufacturing: the case of lightweight aircraft components, J. Clean. Prod., 135, 1559–1570, 2016.
  • 23. Kaur I., Singh P., Critical evaluation of additively manufactured metal lattices for viability in advanced heat exhangers, International Journal of Heat and Mass Transfer, 168, 120858, 2021.
  • 24. Kolken H.M.A., Jonge C.P.D., Sloten T.V.D., Garcia A.F., Pouran B., Willemsen K., Weinans H., Zadpoor A.A., Additively manufactured space-filling meta-implants, Acta Biomaterialia, 125, 345-357, 2021.
  • 25. Kolken H.M.A., Janbaz S., Leeflang S.M.A., Lietaert K., Weinans H.H., Zadpoor A.A., Rationally designed meta-implants: A combination of auxetic and conventional meta-biomaterials, Materials Horizons, 5(1), 28-35, 2018.
  • 26. Gu D., Yang J., Lin K., Ma C., Yuan L., Hongmei Z., Guo M., Zhang H., Compression performance and mechanism of superimposed sine-wave structures fabricated by selective laser melting, Materials & Design, 198, 109291, 2021.
  • 27. Ferro C.G., Varetti S., Pasquale G.D., Maggiore P., Lattice structured impact absorber with embedded anti-icing system for aircraft wings fabricated with additive SLM process, Mater.today: Communications, 15, 185-189, 2018.
  • 28. Zaharia S.M., Lancea C., Chicos L.A., Pop M.A., Caputo G., Serra E., Mechanical properties and corrosion behaviour of 316L stainless steel honeycomb cellular cores manufactured by selective laser melting, Transactions of Famena XLI-4, 11-24, 2017.
  • 29. Ergene B., Eklemeli imalat ile titanyum ve polimer esaslı malzemelerden üretilen hücresel yapıların mekanik davranışlarının deneysel olarak araştırılması, Doktora Tezi, Isparta Uygulamalı Bilimler Üniversitesi, Fen Bilimleri Enstitüsü, Isparta, 2020.
  • 30. Lei H., Li C., Meng J., Zhou H., Liu Y., Zhang X., Wang P., Fang D., Evaluation of compressive properties of SLM-fabricated multi-layer lattice structures by experimental test and μ-CT-based finite element analysis, Materials & Design, 169, 107685, 2019.
  • 31. Lee W., Jeong Y., Yoo J., Huh H., Park S.J., Park S.H., Yoon J., Effect of auxetic structures on crash behavior of cylindrical tube, Composite Structures, 208, 836-846, 2019.
  • 32. Popovich V.A., Borisov E.V., Heurtebise V., Riemslag T., Popovich A.A., Sufliarov V.S., Creep and Thermomechanical Fatigue of Functionally Graded Inconel 718 Produced by Additive Manufacturing, 147th Annual Meeting & Exhibition Supplemental Proceedings, 85-97, 2018.
  • 33. Hazeli K., Babamiri B.B., Indeck J., Minor A., Askari H., Microstructure-topology relationship effects on the quasi-static anddynamic behavior of additively manufactured lattice structures, Materials & Design, 176, 107826, 2019.
  • 34. Xiong Y.Z., Gao R.N., Zhang H., Dong L.L., Li J.T., Li X., Rationally designed functionally graded porous Ti6Al4V scaffolds with high strength and toughness built via selective laser melting for load-bearing orthopedic applications, Journal of the Mechanical Behavior of Biomedical Materials, 104, 103673, 2020.
  • 35. Kas M., Yılmaz O., Radially graded porous structure design for laser powder bed fusion additive manufacturing of Ti-6Al-4V alloy, Journal of Materials Processing Technology, 296, 117186, 2021.
  • 36. Periane S., Duchosal A., Vaudreuil S., Chibane H., Morandeau A., Xavior M.A., Leroy R., Influence of heat treatment on the fatigue resistance of Inconel 718 fabricated by selective laser melting (SLM), Materialstoday: Proceedings, In press. Doi: 10.1016/j.matpr.2021.02.447.
  • 37. Nadammal N., Cabeza S., Mishurova T., Thiede T., Kromm A., Seyfert C., Farahbod L., Haberland C., Schneider J.A., Portella P.D., Bruno G., Effect of hatch length on the development of microstructure, texture and residual stresses in selective laser melted superalloy Inconel 718, Mater. Des. 134, 139–150, 2017.
  • 38. Vayssette B., Saintier N., Brugger C., May M.E., Pessard E., Surface roughness of Ti-6Al-4V parts obtained by SLM and EBM: Effect on the High Cycle Fatigue life. Procedia Engineering, 213, 89-97, 2018. Doi: 10.1016/j.proeng.2018.02.010.
  • 39. Lu Y., Wu S., Gan Y., Huang T., Yang C., Junjie L., Lin J., Study on the microstructure, mechanical property and residual stress of SLM Inconel-718 alloy manufactured by differing island scanning strategy, Optics Laser Technol., 75, 197–206, 2015.
  • 40. Sames W.J., Medina F., Peter W.H., Babu S.S., Dehoff R.R., Effect of process control and powder quality on Inconel 718 produced using electron beam melting, 8th International Symposium on Superalloy 718 and Derivatives, 409–423, 2014.
  • 41. Mukherjee T., Zhang W., DebRoy T., An improved prediction of residual stresses and distortion in additive manufacturing, Comput. Mater. Sci., 126, 360–372, 2017.
  • 42. Zhang D., Niu W., Cao X., Liu Z., Effect of standard heat treatment on the microstructure and mechanical properties of selective laser melting manufactured Inconel 718 superalloy, Mater. Sci. Eng. A, 644, 32–40, 2015.
  • 43. Harrison N.J., Todd I., Mumtaz K., Reduction of micro-cracking in nickel superalloys processed by selective laser melting: a fundamental alloy design approach, Acta Mater., 94, 59–68, 2015.
  • 44. Yiğit O., Dilmeç M., Halkacı S., Tabaka kaldırma yöntemi ile kalıntı gerilmelerin ölçülmesi ve diğer yöntemlerle karşılaştırılması, Mühendis ve Makine, 49(579), 20-27, 2008.
  • 45. Yasa E., Poyraz Ö., Investigation of residual stresses by micro indentation in selective laser melting, Journal of the Faculty of Engineering and Architecture of Gazi University, 36(2), 1029-1040, 2021.
  • 46. Kayacan M.Y., Seçici Lazer Ergitme (SLE) ile İmalatta Geometrik Parametrelerin Sıcaklık Dağılımı, Kalıntı Gerilme ve Deformasyona Etkisinin Araştırılması, Doktora Tezi, Isparta Uygulamalı Bilimler Üniversitesi, Fen Bilimleri Enstitüsü, Isparta, 2020.
  • 47. Nesli S., Yilmaz O., Surface characteristics of laser polished Ti-6Al-4V parts produced by electron beam melting additive manufacturing process, The International Journal of Advanced Manufacturing Technology, 114, 271-289, 2021. Doi: 10.1007/s00170-021-06861-6.
  • 48. Ermergen T., Taylan F., Review on Surface Quality Improvement of Additively Manufactured Metals by Laser Polishing, Arabian Journal for Science and Engineering, 2021, Doi: 10.1007/s13369-021-05658-9.
  • 49. Kayacan M.C., Delikanlı Y.E., Duman B., Özsoy K., Ti6Al4V toz alaşımı kullanılarak sls ile üretilen geçişli (değişken) gözenekli numunelerin mekanik özelliklerinin incelenmesi, Journal of the Faculty of Engineering and Architecture of Gazi University, 33(1), 127-143, 2018.
  • 50. Crupi V., Kara E., Epasto G., Guglielmino E., Aykul H. Static behavior of lattice structures produced via direct metal laser sintering technology, Materials & Design, 135, 246-256, 2017.
  • 51. Peter N., Pitts Z., Thompson S., Saharan A., Benchmarking Build Simulation Software for Laser Powder Bed Fusion of Metals, Additive Manufacturing, 36, 101531, 2020.
  • 52. Galerati M., Residual Stress Prediction of Additive Manufactured Electric Motor Cores Using Finite Element Analysis, Master Thesis, Politecnico Di Torino McMASTER UNIVERSITY, 2020.
  • 53. Mayer T., Brandle G., Schönenberger A., Eberlein R., Simulation and validation of residual deformations in additive manufacturing of metal parts, Heliyon, 6, e03987, 2020.
  • 54. Soylemez E., Koç E., Coşkun M., Thermo‑mechanical simulations of selective laser melting for AlSi10Mg alloy to predict the part‑scale deformations, Progress in Additive Manufacturing, 4, 465-478, 2019.
  • 55. Dobrzanski L.A., Danikiewicz A.D.D., Gawel T.G., Franczak A.A., Selective Laser Sintering and Melting of pristine titanium and titanium Ti6Al4V alloy powders and selection of chemical environment for etching of such materials, Archives of Metallurgy and Materials, 60(3), 2039-2045, 2015.
  • 56. Rahmani R., Rosenberg M., Ivask A., Kollo L., Comparison of Mechanical and Antibacterial Properties of TiO2/Ag Ceramics and Ti6Al4V-TiO2/Ag Composite Materials Using Combined SLM-SPS Techniques, Metals, 9(8), 1-13, 2019.
  • 57. Eos M400-4. https://www.eos.info/en/additive-manufacturing/3d-printing-metal/eos-metal-systems/eos-m-400-4. Erişim tarihi Nisan 12, 2021.
  • 58. Kelly C.N., Francovich J., Julmi S., Safranski D., Guldberg R.E., Maier H.J., Gall K., Fatigue behavior of As-built selective laser melted titanium scaffolds with sheet-based gyroid microarchitecture for bone tissue engineering, Acta Biomaterialia, 94, 610-626, 2019.
  • 59. Liang H., Yang Y., Xie D., Li L., Mao N., Wang C., Tian Z., Jiang Q., Shen L., Trabecular-like Ti-6Al-4V scaffolds for orthopedic: fabrication by selective laser melting and in vitro biocompatibility, Journal of Materials Science & Technology, 35, 7, 1284-1297, 2019.
  • 60. Ginestra P., Ferraro R.M., Hauber K.Z., Abeni A., Giliani S., Ceretti E., Selective Laser Melting and Electron Beam Melting of Ti6Al4V for Orthopedic Applications: A Comparative Study on the Applied Building Direction, Materials, 13, 1-22, 2020.
  • 61. Kaynak Y., Tascioglu E., Post-processing effects on the surface characteristics of Inconel 718 alloy fabricated by selective laser melting additive manufacturing, Progress in Additive Manufacturing, 5, 221-234, 2020.
  • 62. Poyraz Ö., Kuşhan M.C., Investigation of the effect of different process parameters for laser additive manufacturing of metals. Journal of the Faculty of Engineering and Architecture of Gazi University 33(2), 729-742, 2018.
  • 63. Keller N., Ploshikhin V., New Method for fast predictions of residual stress and distortion of AM parts, Sffsymposium.engr.utexas.edu, 2014. https://www.semanticscholar.org/paper/NEW-METHOD-FOR-FAST-PREDICTIONS-OF-RESIDUAL-STRESS-Keller-Ploshikhin/6c4cad8045bdaac3d47b9c63ddef3a81c510d28a.
  • 64. Hill M., Nelson D.V., The Inherent Strain Method For Residual Stress Determination And Its Application To A Long Welded Joint, ASME Press. Vessels Pip. 318, 1999.
  • 65. Ma N., Nakacho K., Ohta T., Ogawa N., Maekawa A., Huang H., Murakawa H., Inherent Strain Method for Residual Stress Measurement and Welding Distortion Prediction, in: 2016: p. V009T13A001. doi:10.1115/OMAE2016-54184
  • 66. Ueda Y., Fukuda K., Nakacho K., Endo S., A New Measuring Method of Residual Stresses with the Aid of Finite Element Method and Reliability of Estimated Values, Journal of the Society of Naval Architects of Japan, 1975, 499-507, 1975. doi:http://dx.doi.org/10.2534/jjasnaoe1968.1975.138_499.
  • 67. Bugatti M., Semeraro Q., Limitations of the inherent strain method in simulating powder bed fusion processes, Additive Manufacturing, 23, 329–346, 2018. Doi:10.1016/j.addma.2018.05.041.
  • 68. Mugwagwa L., Dimitrov D., Matope S., Yadroitsev I., Influence of process parameters on residual stress related distortions in selective laser melting, Procedia Manufacturing, 21, 92-99, 2018.
  • 69. Ahmad B., Veen S.O.V.D., Fitzpatrick M.E., Guo H., Residual stress evaluation in selective-laser-melting additively manufactured titanium (Ti-6Al-4V) and inconel 718 using the contour method and numerical simulation, Additive Manufacturing, 22, 571-582, 2018.
  • 70. Poyraz Ö., Kuşhan M.C., Residual stress-induced distortions in laser powder bed additive manufacturing of Nickel-based superalloys, Journal of Mechanical Engineering, 65, 343-350, 2019.
  • 71. Afrazov S., Denmark W.A.D., Toralles B.L., Holloway A., Yaghi A., Distortion and prediction and compensation in selective laser melting, Additive Manufacturing, 17, 15-22, 2017.
  • 72. Li C., Liu J.F., Guo Y.B., Prediction of Residual Stress and Part Distortion in Selective Laser Melting, Procedia CIRP, 45, 171-174, 2016.
  • 73. Romero C., Yang F., Bolzoni L., Fatigue and fracture properties of Ti alloys from powder-based processes – A review, International Journal of Fatigue, 117, 407-419, 2018.
  • 74. Vilaro T., Colin C., Bartout J.D., As-fabricated and heat-treated microstructures of the Ti-6Al-4V alloy processed by selective laser melting, Metallurgical and Materials Transactions A, 42, 3190-3199, 2011.
  • 75. Singla A.K., Banerjee M., Sharma A., Singh J., Bansal A., Gupta M.K., Khanna N., Shahi A.S., Goyal D.K., Selective laser melting of Ti6Al4V alloy: Process parameters, defects and post-treatments, Journal of Manufacturing Processes, 64, 161-187, 2021.
  • 76. Lu Y.J., Wu S.Q., Gan Y.L., Huang T.T., Yang C.G., Lin J.J., Lin J.X., Study on the microstructure, mechanical property and residual stress of SLM Inconel-718 alloy manufactured by differing island scanning strategy, Opt. Laser Technol., 75, 197–206, 2015.
  • 77. Liu Y., Yang Y., Wang D., A study on the residual stress during selective laser melting (SLM) of metallic powder, The International Journal of Advanced Manufacturing Technology, 87, 647-656, 2016.
  • 78. Kashapov R.N., Kashapov L.N., Kashapov N.F., Formation of cracks in the selective laser melting of objects from powdered stainless steel 17-4 PH, 2017 IOP Conf. Ser.: Mater. Sci. Eng. 240, 012074, 2017.
  • 79. Martinez S., Ortega N., Celentano D., Egea A.J.S., Ukar E., Lamikiz A., Analysis of the part distortions for Inconel 718 SLM: A case study on the NIST test artifact, Materials, 13, 5087, 2020.
  • 80. Mishurova T., Cabeza S., Thiede T., Nadammal N., Kromm A., Klaus M., Genzel C., Haberland C., Bruno G., The Influence of the Support Structure on Residual Stress and Distortion in SLM Inconel 718 Parts, Metallurgical and Materials Transactions A, 49, 3038-3046, 2018.
  • 81. Chen Y., Sun H., Li Z., Wu Y., Xiao Y., Chen Z., Zhong S., Wang H., Strategy of Residual Stress Determination on Selective Laser Melted Al Alloy Using XRD, Materials, 13(2), 1-11, 2020.
  • 82. Mercelis P., Kruth J.P., Residual stresses in selective laser sintering and selective laser melting, Rapid Prototyp. J., 12, 254–265, 2006.
  • 83. Anderson L.S., Venter A.M., Vrancken B., Marais D., van Humbeeck J., Becker T.H., Investigating the Residual Stress Distribution in Selective Laser Melting Produced Ti-6Al-4V using Neutron Diffraction, Mater. Res. Proc., 4, 73–78, 2018.
  • 84. Mirkoohi E., Ning J., Bocchini P., Fergani O., Chiang K.N., Liang S.Y., Thermal Modeling of Temperature Distribution in Metal Additive Manufacturing Considering Effects of Build Layers, Latent Heat, and Temperature-Sensitivity of Material Properties, J. Manuf. Mater. Process. 2, 63, 1-19, 2018.
Toplam 84 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Berkay Ergene 0000-0001-6145-1970

Yayımlanma Tarihi 10 Kasım 2021
Gönderilme Tarihi 7 Mayıs 2021
Kabul Tarihi 20 Haziran 2021
Yayımlandığı Sayı Yıl 2022 Cilt: 37 Sayı: 1

Kaynak Göster

APA Ergene, B. (2021). Farklı bağıl yoğunluklardaki Inconel 718 ve Ti6Al4V biyomedikal parçaların seçici lazer ergitme (SLE) metoduyla üretiminin simülasyonu. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 37(1), 469-484. https://doi.org/10.17341/gazimmfd.934143
AMA Ergene B. Farklı bağıl yoğunluklardaki Inconel 718 ve Ti6Al4V biyomedikal parçaların seçici lazer ergitme (SLE) metoduyla üretiminin simülasyonu. GUMMFD. Kasım 2021;37(1):469-484. doi:10.17341/gazimmfd.934143
Chicago Ergene, Berkay. “Farklı bağıl yoğunluklardaki Inconel 718 Ve Ti6Al4V Biyomedikal parçaların seçici Lazer Ergitme (SLE) Metoduyla üretiminin simülasyonu”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 37, sy. 1 (Kasım 2021): 469-84. https://doi.org/10.17341/gazimmfd.934143.
EndNote Ergene B (01 Kasım 2021) Farklı bağıl yoğunluklardaki Inconel 718 ve Ti6Al4V biyomedikal parçaların seçici lazer ergitme (SLE) metoduyla üretiminin simülasyonu. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 37 1 469–484.
IEEE B. Ergene, “Farklı bağıl yoğunluklardaki Inconel 718 ve Ti6Al4V biyomedikal parçaların seçici lazer ergitme (SLE) metoduyla üretiminin simülasyonu”, GUMMFD, c. 37, sy. 1, ss. 469–484, 2021, doi: 10.17341/gazimmfd.934143.
ISNAD Ergene, Berkay. “Farklı bağıl yoğunluklardaki Inconel 718 Ve Ti6Al4V Biyomedikal parçaların seçici Lazer Ergitme (SLE) Metoduyla üretiminin simülasyonu”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 37/1 (Kasım 2021), 469-484. https://doi.org/10.17341/gazimmfd.934143.
JAMA Ergene B. Farklı bağıl yoğunluklardaki Inconel 718 ve Ti6Al4V biyomedikal parçaların seçici lazer ergitme (SLE) metoduyla üretiminin simülasyonu. GUMMFD. 2021;37:469–484.
MLA Ergene, Berkay. “Farklı bağıl yoğunluklardaki Inconel 718 Ve Ti6Al4V Biyomedikal parçaların seçici Lazer Ergitme (SLE) Metoduyla üretiminin simülasyonu”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, c. 37, sy. 1, 2021, ss. 469-84, doi:10.17341/gazimmfd.934143.
Vancouver Ergene B. Farklı bağıl yoğunluklardaki Inconel 718 ve Ti6Al4V biyomedikal parçaların seçici lazer ergitme (SLE) metoduyla üretiminin simülasyonu. GUMMFD. 2021;37(1):469-84.

Cited By