Konkav Maliyetli Ulaştırma Problemi (KMUP), gerçek hayatta sık karşılaşılan problemlerden birisidir. Doğrusal maliyetli problemlerin aksine, KMUP’de taşınacak miktar arttıkça birim taşıma maliyeti azalmaktadır. Bu tür problemlerde doğrusal olmayan maliyet fonksiyonundan dolayı klasik optimizasyon yöntemleri ile en iyi çözüme ulaşmak mümkün olmayabilir. Son yıllarda, genetik algoritmalar, tavlama benzetimi ve tabu arama gibi genel amaçlı sezgisel yöntemlerin bu tür zor problemlerin çözümünde başarıyla kullanıldığı görülmektedir. Bu çalışmada, KMUP için genetik algoritmalara dayalı bir karma sezgisel algoritma (karma GA) geliştirilmiştir. Algoritmanın etkinliği, tedarikçi ve müşteri sayısının 4 ile 40 arasında değiştiği ve rassal olarak üretilen 12 problem üzerinde incelenmiştir. Geliştirilen karma GA, literatürde bu problem için geliştirilmiş olan tavlama benzetimi, eşik kabulü ve doğrusal eşik kabulü yöntemine dayalı sezgisel algoritmalar ile karşılaştırılmıştır. Karşılaştırma sonucunda, geliştirilen karma GA ile dört problem için çözüm kalitesinde %0.3 ile %5 arasında iyileşmenin olduğu görülmüştür.
Ulaştırma problemi genetik algoritmalar yayılan ağaç tavlama benzetimi eşik kabulü.
Birincil Dil | Türkçe |
---|---|
Bölüm | Makaleler |
Yazarlar | |
Yayımlanma Tarihi | 10 Nisan 2013 |
Gönderilme Tarihi | 10 Nisan 2013 |
Yayımlandığı Sayı | Yıl 2005 Cilt: 20 Sayı: 4 |