BibTex RIS Kaynak Göster

BULANIK MODEL REFERANS ÖĞRENMELİ DENETİM YÖNTEMİNDE KULLANILAN KAZANÇLARIN BİR GENETİK ALGORİTMA İLE BELİRLENMESİ

Yıl 2006, Cilt: 21 Sayı: 1, 29 - 38, 01.04.2013

Öz

Bulanık Model Referans Öğrenmeli Denetim (BMRÖD), bulanık denetleyicilerin tasarımı için sistematik tasarım prosedürü sağlayan bir yöntemdir. Çoğu klasik bulanık denetim sisteminde, üyelik fonksiyonlarının bazı parametreleri deneme-yanılma yöntemi ile belirlenir. Buna karşın, BMRÖD metodunda, bu parametreler bir öğrenme mekanizması ile belirlenir. Bu makalede, BMRÖD metodu incelenerek kargo gemisi dümen denetimine uygulanmış ve benzetim sonuçları sunulmuştur. İncelemeler sırasında, BMRÖD sisteminde kullanılan giriş ve çıkış kazançlarının denetim performansı üzerinde çok etkili olduğu ve bu kazançların belirlenmesi için literatürde sistematik bir yolun olmadığı tespit edilmiştir. Bu nedenle, bu çalışmada, iyi bir denetim performansı sağlayacak kazançların bulunması için Genetik Algoritma (GA) kullanılmıştır. Sunulan denetim yapısının etkinliğini gösteren benzetim sonuçları makalede verilmiştir

Kaynakça

  • Passino,K., and Yurkovich S., Fuzzy Control, Addison-Wesley Publishing Company, 1998.
  • Kickert, W. and Lemke H. V. N., “Application of a fuzzy controller in a warm water plant”, Automatica, vol. 12,no. 4, pp. 301–308, 1976.
  • Self, K., “Designing with fuzzy logic”, IEEE Spectrum, pp. 42-105 and 105, 1989.
  • Layne, J., Fuzzy model reference learning control, Master’s thesis, Department of Electrical Engineering, The Ohio State University, 1992.
  • Astrom, K., and Wittenmark, B., Adaptive Control. Reading, Addison-Wesley Publishing Company, 1989.
  • Procyk, T., and Mamdani, E., “A linguistic self-organizing process controller”, Automatica, vol. 15, no.1, pp. 15–30, 1979.
  • Scharf, E., and Mandic, N., “The application of a fuzzy controller to the control of a multi-degree-of-freedomrobot arm”, in Industrial Applications of Fuzzy Control, pp. 41–62, Amsterdam, the Netherlands: M. Sugeno(ed.), 1985.
  • Tanscheit, R., and Scharf, E, “Experiments with the use of a rule-based self-organising controller for roboticsapplications”, Fuzzy Sets and Systems, vol. 26, pp. 195–214, 1988.
  • Yamazaki, T., An improved algorithm for a self-organizing controller and its experimental analysis. PhD thesis, London University, 1982.
  • Layne, J., and Passino, K., “Fuzzy model reference learning control”, Proceedings of the 1st IEEE Conference on Control Applications, pp. 686–691, 1992.
  • Scharf, E., and Mandic, N., “The application of a fuzzy controller to the control of a multi-degree-of-freedomrobot arm”, in Industrial Applications of Fuzzy Control, pp. 41–62, Amsterdam, the Netherlands: M. Sugeno(ed.), 1985.
  • Tanscheit, R., and Scharf, E, “Experiments with the use of a rule-based self-organising controller for roboticsapplications”, Fuzzy Sets and Systems, vol. 26, pp. 195–214, 1988.
  • Shao, S., “Fuzzy self-organizing controller and its application for dynamic processes”, Fuzzy Sets and Systems, vol. 26, pp. 151–164, 1988.
  • Isaka, S., Sebald, A, Karimi, A., Smith, N., and Quinn, M., “On the design and performance evaluation of adaptive fuzzy controllers”, Proceedings, IEEE Conference on Decision and Control, pp. 1068–1069, 1988.
  • Daley, S., and Gill, K., F., “Comparison of a fuzzy logic controller with a P+D control law”, Journal of Dynamical System, Measurement, and Control, vol. 111, pp. 128–137, 1989.
  • Daley, S., and Gill, K., F., “Altitude control of a spacecraft using an extended self-organizing fuzzy logic controller”, Proc. I. Mech. E., vol. 201, no. 2, pp. 97–106, 1987.
  • Daley, S., and Gill, K., F., “A design study of a self-organizing fuzzy logic controller”, Proc. I. Mech. E., vol. 200, pp. 59–69, 1986.
  • Layne, J., Passino, K., and Yurkovich, S., “Fuzzy learning control for anti-skid braking systems”, IEEE Trans. on Control System Technology, vol. 1, pp. 122–129, 1993.
  • Layne, J., Passino, K., and Yurkovich, S., “Fuzzy learning control for anti-skid braking systems”, Proc. IEEE Conf. on Decision and Control, pp. 2523–2528, 1992.
  • Layne, J. and Passino, K., “Fuzzy model reference learning control for cargo ship steering”, IEEE Control Systems, vol. 13, no. 6, pp. 23–34, 1993.
  • Moudgal, V., Kwong, W., Passino K., and Yurkovich S., “Learning control for a two-link.exible mechanism”, Proc. of the American Control Conference, pp. Baltimore, MD, 1994.
  • Kwong, W., and Passino, K., “Fuzzy learning systems for aircraft control law recon.guration”, Proceedings of the IEEE Int. Symp. on Intelligent Control, pp. Columbus, Ohio, Aug. 16-18, 1994.
  • Narendra, K., and Annaswamy, A., Stable Adaptive Systems, Prentice Hall. Englewood Cli.s, 1989.
  • Farrell, J. and Baker, W., “Learning control systems”, in An Introduction to Intelligent and Autonomous Control Systems (P. Antsaklis and K. Passino, eds.), Kluwer Academic Publishers; Norwell MA, 1993.
  • Tokat, S. and Eksin, İ. and Güzelkaya, M., “Değişken Kayma Yüzeyi Eğimi Kullanan Bulanık Kayma Kipli Kontrolör Tasarımı”, Elektrik-Elektronik-Bilgisayar Mühendisliği 9. Ulusal Kongresi, Kocaeli, 2001.
  • Brown, S.,C., and Passino, K., M., “Intelligent Control for An Acrobot”, J. Of Intelligent and Robot Systems, v.18,pp. 209-248, 1997.
Yıl 2006, Cilt: 21 Sayı: 1, 29 - 38, 01.04.2013

Öz

Kaynakça

  • Passino,K., and Yurkovich S., Fuzzy Control, Addison-Wesley Publishing Company, 1998.
  • Kickert, W. and Lemke H. V. N., “Application of a fuzzy controller in a warm water plant”, Automatica, vol. 12,no. 4, pp. 301–308, 1976.
  • Self, K., “Designing with fuzzy logic”, IEEE Spectrum, pp. 42-105 and 105, 1989.
  • Layne, J., Fuzzy model reference learning control, Master’s thesis, Department of Electrical Engineering, The Ohio State University, 1992.
  • Astrom, K., and Wittenmark, B., Adaptive Control. Reading, Addison-Wesley Publishing Company, 1989.
  • Procyk, T., and Mamdani, E., “A linguistic self-organizing process controller”, Automatica, vol. 15, no.1, pp. 15–30, 1979.
  • Scharf, E., and Mandic, N., “The application of a fuzzy controller to the control of a multi-degree-of-freedomrobot arm”, in Industrial Applications of Fuzzy Control, pp. 41–62, Amsterdam, the Netherlands: M. Sugeno(ed.), 1985.
  • Tanscheit, R., and Scharf, E, “Experiments with the use of a rule-based self-organising controller for roboticsapplications”, Fuzzy Sets and Systems, vol. 26, pp. 195–214, 1988.
  • Yamazaki, T., An improved algorithm for a self-organizing controller and its experimental analysis. PhD thesis, London University, 1982.
  • Layne, J., and Passino, K., “Fuzzy model reference learning control”, Proceedings of the 1st IEEE Conference on Control Applications, pp. 686–691, 1992.
  • Scharf, E., and Mandic, N., “The application of a fuzzy controller to the control of a multi-degree-of-freedomrobot arm”, in Industrial Applications of Fuzzy Control, pp. 41–62, Amsterdam, the Netherlands: M. Sugeno(ed.), 1985.
  • Tanscheit, R., and Scharf, E, “Experiments with the use of a rule-based self-organising controller for roboticsapplications”, Fuzzy Sets and Systems, vol. 26, pp. 195–214, 1988.
  • Shao, S., “Fuzzy self-organizing controller and its application for dynamic processes”, Fuzzy Sets and Systems, vol. 26, pp. 151–164, 1988.
  • Isaka, S., Sebald, A, Karimi, A., Smith, N., and Quinn, M., “On the design and performance evaluation of adaptive fuzzy controllers”, Proceedings, IEEE Conference on Decision and Control, pp. 1068–1069, 1988.
  • Daley, S., and Gill, K., F., “Comparison of a fuzzy logic controller with a P+D control law”, Journal of Dynamical System, Measurement, and Control, vol. 111, pp. 128–137, 1989.
  • Daley, S., and Gill, K., F., “Altitude control of a spacecraft using an extended self-organizing fuzzy logic controller”, Proc. I. Mech. E., vol. 201, no. 2, pp. 97–106, 1987.
  • Daley, S., and Gill, K., F., “A design study of a self-organizing fuzzy logic controller”, Proc. I. Mech. E., vol. 200, pp. 59–69, 1986.
  • Layne, J., Passino, K., and Yurkovich, S., “Fuzzy learning control for anti-skid braking systems”, IEEE Trans. on Control System Technology, vol. 1, pp. 122–129, 1993.
  • Layne, J., Passino, K., and Yurkovich, S., “Fuzzy learning control for anti-skid braking systems”, Proc. IEEE Conf. on Decision and Control, pp. 2523–2528, 1992.
  • Layne, J. and Passino, K., “Fuzzy model reference learning control for cargo ship steering”, IEEE Control Systems, vol. 13, no. 6, pp. 23–34, 1993.
  • Moudgal, V., Kwong, W., Passino K., and Yurkovich S., “Learning control for a two-link.exible mechanism”, Proc. of the American Control Conference, pp. Baltimore, MD, 1994.
  • Kwong, W., and Passino, K., “Fuzzy learning systems for aircraft control law recon.guration”, Proceedings of the IEEE Int. Symp. on Intelligent Control, pp. Columbus, Ohio, Aug. 16-18, 1994.
  • Narendra, K., and Annaswamy, A., Stable Adaptive Systems, Prentice Hall. Englewood Cli.s, 1989.
  • Farrell, J. and Baker, W., “Learning control systems”, in An Introduction to Intelligent and Autonomous Control Systems (P. Antsaklis and K. Passino, eds.), Kluwer Academic Publishers; Norwell MA, 1993.
  • Tokat, S. and Eksin, İ. and Güzelkaya, M., “Değişken Kayma Yüzeyi Eğimi Kullanan Bulanık Kayma Kipli Kontrolör Tasarımı”, Elektrik-Elektronik-Bilgisayar Mühendisliği 9. Ulusal Kongresi, Kocaeli, 2001.
  • Brown, S.,C., and Passino, K., M., “Intelligent Control for An Acrobot”, J. Of Intelligent and Robot Systems, v.18,pp. 209-248, 1997.
Toplam 26 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Makaleler
Yazarlar

Özgür Karaduman Bu kişi benim

Z. Hakan Akpolat Bu kişi benim

Yayımlanma Tarihi 1 Nisan 2013
Gönderilme Tarihi 28 Mart 2013
Yayımlandığı Sayı Yıl 2006 Cilt: 21 Sayı: 1

Kaynak Göster

APA Karaduman, Ö., & Akpolat, Z. H. (2013). BULANIK MODEL REFERANS ÖĞRENMELİ DENETİM YÖNTEMİNDE KULLANILAN KAZANÇLARIN BİR GENETİK ALGORİTMA İLE BELİRLENMESİ. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 21(1), 29-38.
AMA Karaduman Ö, Akpolat ZH. BULANIK MODEL REFERANS ÖĞRENMELİ DENETİM YÖNTEMİNDE KULLANILAN KAZANÇLARIN BİR GENETİK ALGORİTMA İLE BELİRLENMESİ. GUMMFD. Nisan 2013;21(1):29-38.
Chicago Karaduman, Özgür, ve Z. Hakan Akpolat. “BULANIK MODEL REFERANS ÖĞRENMELİ DENETİM YÖNTEMİNDE KULLANILAN KAZANÇLARIN BİR GENETİK ALGORİTMA İLE BELİRLENMESİ”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 21, sy. 1 (Nisan 2013): 29-38.
EndNote Karaduman Ö, Akpolat ZH (01 Nisan 2013) BULANIK MODEL REFERANS ÖĞRENMELİ DENETİM YÖNTEMİNDE KULLANILAN KAZANÇLARIN BİR GENETİK ALGORİTMA İLE BELİRLENMESİ. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 21 1 29–38.
IEEE Ö. Karaduman ve Z. H. Akpolat, “BULANIK MODEL REFERANS ÖĞRENMELİ DENETİM YÖNTEMİNDE KULLANILAN KAZANÇLARIN BİR GENETİK ALGORİTMA İLE BELİRLENMESİ”, GUMMFD, c. 21, sy. 1, ss. 29–38, 2013.
ISNAD Karaduman, Özgür - Akpolat, Z. Hakan. “BULANIK MODEL REFERANS ÖĞRENMELİ DENETİM YÖNTEMİNDE KULLANILAN KAZANÇLARIN BİR GENETİK ALGORİTMA İLE BELİRLENMESİ”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 21/1 (Nisan 2013), 29-38.
JAMA Karaduman Ö, Akpolat ZH. BULANIK MODEL REFERANS ÖĞRENMELİ DENETİM YÖNTEMİNDE KULLANILAN KAZANÇLARIN BİR GENETİK ALGORİTMA İLE BELİRLENMESİ. GUMMFD. 2013;21:29–38.
MLA Karaduman, Özgür ve Z. Hakan Akpolat. “BULANIK MODEL REFERANS ÖĞRENMELİ DENETİM YÖNTEMİNDE KULLANILAN KAZANÇLARIN BİR GENETİK ALGORİTMA İLE BELİRLENMESİ”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, c. 21, sy. 1, 2013, ss. 29-38.
Vancouver Karaduman Ö, Akpolat ZH. BULANIK MODEL REFERANS ÖĞRENMELİ DENETİM YÖNTEMİNDE KULLANILAN KAZANÇLARIN BİR GENETİK ALGORİTMA İLE BELİRLENMESİ. GUMMFD. 2013;21(1):29-38.