Araştırma Makalesi
BibTex RIS Kaynak Göster

Uzaktan Algılama Uydu Görüntüleme Sistemleri İçin Sinyal Gürültü Oranı Hesaplama Yöntemi

Yıl 2013, Cilt: 28 Sayı: 2, 217 - 222, 27.03.2014

Öz

Sinyal Gürültü Oranı (SGO) uydu görüntüleme sistemlerinde görüntü kalitesi ile radyometrik performansı birbirine bağlayan bir ölçüt olarak kullanılır ve uzaktan algılama uydu görüntüleme sistemlerinde görüntü kalitesini gösteren parametrelerden birisidir. Uzaktan algılama uydu görüntü sistemi tasarım aşamasında SGO hesaplamalarının ve analizlerinin yapılması gerekmektedir. Bu hesaplama ve analiz çalışmaları tasarıma yön verilmesi ve tasarımın doğrulanması için önem taşımaktadır. Tasarlanan optik görüntüleme sistemine kaliteli bir görüntü oluşturabilecek ışık akısının ulaştığı ve ulaşan bu ışık akısının sensör üzerinde yeteri kadar elektron oluşturduğu gösterilmelidir. Bu çalışmada alçak irtifa yörüngesinde görev alan yakın kızıl ötesi bantta çalışan bir uydu görüntüleme sisteminin spektral ve toplam ışık akı miktarı hesaplaması yapılarak SGO analizi sunulmuştur. Optik sistemin görüntü kalitesinin tasarım aşamasında tahmin edilebilmesi ve optik giriş açıklık çapının
belirlenmesi için sensöre gelen ışık miktarının hesaplanması ve SGO analizinin yapılması gerekmektedir. Bu çalışmada uzaktan algılama uydu görüntüleme sistemleri için yer yüzünden yansıyıp atmosferi geçerek görüntüleme sensörünün bir pikseline oluşan toplam elektron sinyal miktarı hesaplama yöntemi verilmiş ve SGO analizi yapılmıştır. Önerilen SGO analiziyle optik görüntüleme sisteminin 2,5 milisaniye görüntü alma süresince düşük kapasitans modda çalıştırılmasıyla sensörün bir pikselinin %28,2'i elektronlarla dolduğu, kazancın 0,56 V ve SGO'nın 861 olduğu tespit edilmiştir.

Kaynakça

  • Fiete, R. D. ve Tantalo, T., "Comparison of SNR
  • Image Quality Metrics For Remote Sensing
  • Systems", Optical Engineering, Cilt 40, No 4,
  • –585, 2001.
  • Kim, T., Kim, H. ve Kim, H., "Image-Based
  • Estimation and Validation of Niirs for High
  • Resolution Satellite Images", Technical Note,
  • Department of Geoinformatic Engineering,
  • Inha University, Korea Aerospace Research
  • Institute, Republic of Korea, 2012.
  • Hofer, S., Neumann, C. ve Skrbek, W., "SNR
  • Estimation for Advanced Hyperspectral Space
  • Instrument", Proceedings of SPIE, Infrared
  • Spaceborne Remote Sensing, Cilt 5883, No 3,
  • -7, 2005.
  • Braun, D. ve Alperovich, V., "Electro-Optical
  • System Performance Analysis for Airborne and
  • Spaceborne Photography", Proceedings of SPIE, Airborne Reconnaissance, Cilt 24, No 4127, 85-
  • , 2000.
  • Oh, E., Cho, S., Ahn Y-H., Park, Y., Ryu J-H ve
  • Kim S-W, " In-orbit Optical Performance
  • Assessment of Geostationary Ocean Color
  • Imager", Geoscience and Remote Sensing
  • Symposium (IGARSS), 4750 - 4753, 2012.
  • Xinhong, W., Lingli, T., Chuanrong, L., Bo, Y.
  • ve Bo, Z., "A Practical SNR Estimation Scheme
  • for Remotely Sensed Optical Imagery",
  • Proceedings of SPIE, Cilt 7384, No 34, 1-6,
  • -
  • Berk, A., Bernstein, L.S. ve Robertson, D.C.,
  • "MODTRAN: A Moderate Resolution Model for
  • LOWTRAN7", Technical Report GL-TR-89-
  • , Geophysics Lab., Bedford, USA, 1989.
  • Kneisys, F.X., Abreu, L.W., Anderson, G.P.,
  • Chetwynd, J.H., Shettle, E.P. ve Berk, A., "The
  • MODTRAN 2/3 and LOWTRAN Model",
  • Technical Note, Ontar Corporation, North
  • Andover, MA, 1995.
  • Vermote, E., Tanre, D., Deuze, J.L., Herman, M.
  • ve Morcette, J.J., "Second Simulation Of The
  • Satellite Signal In The Solar Spectrum, 6s User
  • Guide Version 0", Technical Note, NASAGoddard
  • Space Flight Centre, Greenbelt, USA,
  • -
  • Schott, J. R., Remote Sensing, The Image
  • Chain Approach, 2nd Edition, Oxford
  • University Press, New York, 2007.
  • Schowengerdt, R. A., Remote Sensing, Models
  • and Methods for Image Processing, 3rd
  • Edition, Academic Press, New York, 2006.
  • Easton, R. L., Fourier Methods in Imaging,
  • John Wiley & Sons, New York, 2010.
  • Güler, N. F. ve Navruz İ., ”The Optical Grating
  • Based Solutions for Dispersion Compensation in
  • Optical Communication Systems”, Journal of
  • the Faculty of Engineering and Architecture of
  • Gazi University, Cilt 21, No 1, 129-136, 2006.

SNR CALCULATION METHOD FOR REMOTE SENSING SATELLITE IMAGING SYSTEMS

Yıl 2013, Cilt: 28 Sayı: 2, 217 - 222, 27.03.2014

Öz

Signal to Noise Ratio (SNR) is a metric used to link the image quality and radiometric performance of the
remote sensing imaging systems. It is one of the remote sensing imaging system's design parameters that
represents the image quality. SNR calculation and analysis should be carried out at design phase of remote
sensing imaging systems. This calculation and analysis are crucial for confirmation of design success. It is
important to show that the light flux reaching the sensor and the generated electrons on sensor is enough to
create a high quality image. In this paper, the spectral and total light flux power calculations are presented and
SNR analysis in near infrared wavelength region for a remote sensing imaging system used at low earth orbit is
demonstrated. Light flux power calculation and SNR analysis are necessary for designing an optical imaging
system. The amount of light flux entering to the sensor should be calculated. SNR should also be analyzed to
determine the entrance baffle diameter and estimate the image quality of the optical imaging system. The
proposed method provides 28.2% electrons filling ratio per pixel, 0.56 V gain and the SNR of 861 for the 2.5 ms
operation of the optical system. 

Kaynakça

  • Fiete, R. D. ve Tantalo, T., "Comparison of SNR
  • Image Quality Metrics For Remote Sensing
  • Systems", Optical Engineering, Cilt 40, No 4,
  • –585, 2001.
  • Kim, T., Kim, H. ve Kim, H., "Image-Based
  • Estimation and Validation of Niirs for High
  • Resolution Satellite Images", Technical Note,
  • Department of Geoinformatic Engineering,
  • Inha University, Korea Aerospace Research
  • Institute, Republic of Korea, 2012.
  • Hofer, S., Neumann, C. ve Skrbek, W., "SNR
  • Estimation for Advanced Hyperspectral Space
  • Instrument", Proceedings of SPIE, Infrared
  • Spaceborne Remote Sensing, Cilt 5883, No 3,
  • -7, 2005.
  • Braun, D. ve Alperovich, V., "Electro-Optical
  • System Performance Analysis for Airborne and
  • Spaceborne Photography", Proceedings of SPIE, Airborne Reconnaissance, Cilt 24, No 4127, 85-
  • , 2000.
  • Oh, E., Cho, S., Ahn Y-H., Park, Y., Ryu J-H ve
  • Kim S-W, " In-orbit Optical Performance
  • Assessment of Geostationary Ocean Color
  • Imager", Geoscience and Remote Sensing
  • Symposium (IGARSS), 4750 - 4753, 2012.
  • Xinhong, W., Lingli, T., Chuanrong, L., Bo, Y.
  • ve Bo, Z., "A Practical SNR Estimation Scheme
  • for Remotely Sensed Optical Imagery",
  • Proceedings of SPIE, Cilt 7384, No 34, 1-6,
  • -
  • Berk, A., Bernstein, L.S. ve Robertson, D.C.,
  • "MODTRAN: A Moderate Resolution Model for
  • LOWTRAN7", Technical Report GL-TR-89-
  • , Geophysics Lab., Bedford, USA, 1989.
  • Kneisys, F.X., Abreu, L.W., Anderson, G.P.,
  • Chetwynd, J.H., Shettle, E.P. ve Berk, A., "The
  • MODTRAN 2/3 and LOWTRAN Model",
  • Technical Note, Ontar Corporation, North
  • Andover, MA, 1995.
  • Vermote, E., Tanre, D., Deuze, J.L., Herman, M.
  • ve Morcette, J.J., "Second Simulation Of The
  • Satellite Signal In The Solar Spectrum, 6s User
  • Guide Version 0", Technical Note, NASAGoddard
  • Space Flight Centre, Greenbelt, USA,
  • -
  • Schott, J. R., Remote Sensing, The Image
  • Chain Approach, 2nd Edition, Oxford
  • University Press, New York, 2007.
  • Schowengerdt, R. A., Remote Sensing, Models
  • and Methods for Image Processing, 3rd
  • Edition, Academic Press, New York, 2006.
  • Easton, R. L., Fourier Methods in Imaging,
  • John Wiley & Sons, New York, 2010.
  • Güler, N. F. ve Navruz İ., ”The Optical Grating
  • Based Solutions for Dispersion Compensation in
  • Optical Communication Systems”, Journal of
  • the Faculty of Engineering and Architecture of
  • Gazi University, Cilt 21, No 1, 129-136, 2006.
Toplam 57 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mimarlık
Bölüm Makaleler
Yazarlar

Mustafa Türkmenoğlu Bu kişi benim

Orhan Şengül Bu kişi benim

Erdem Demircioğlu Bu kişi benim

Yayımlanma Tarihi 27 Mart 2014
Gönderilme Tarihi 27 Mart 2014
Yayımlandığı Sayı Yıl 2013 Cilt: 28 Sayı: 2

Kaynak Göster

APA Türkmenoğlu, M., Şengül, O., & Demircioğlu, E. (2014). SNR CALCULATION METHOD FOR REMOTE SENSING SATELLITE IMAGING SYSTEMS. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 28(2), 217-222.
AMA Türkmenoğlu M, Şengül O, Demircioğlu E. SNR CALCULATION METHOD FOR REMOTE SENSING SATELLITE IMAGING SYSTEMS. GUMMFD. Şubat 2014;28(2):217-222.
Chicago Türkmenoğlu, Mustafa, Orhan Şengül, ve Erdem Demircioğlu. “SNR CALCULATION METHOD FOR REMOTE SENSING SATELLITE IMAGING SYSTEMS”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 28, sy. 2 (Şubat 2014): 217-22.
EndNote Türkmenoğlu M, Şengül O, Demircioğlu E (01 Şubat 2014) SNR CALCULATION METHOD FOR REMOTE SENSING SATELLITE IMAGING SYSTEMS. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 28 2 217–222.
IEEE M. Türkmenoğlu, O. Şengül, ve E. Demircioğlu, “SNR CALCULATION METHOD FOR REMOTE SENSING SATELLITE IMAGING SYSTEMS”, GUMMFD, c. 28, sy. 2, ss. 217–222, 2014.
ISNAD Türkmenoğlu, Mustafa vd. “SNR CALCULATION METHOD FOR REMOTE SENSING SATELLITE IMAGING SYSTEMS”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 28/2 (Şubat 2014), 217-222.
JAMA Türkmenoğlu M, Şengül O, Demircioğlu E. SNR CALCULATION METHOD FOR REMOTE SENSING SATELLITE IMAGING SYSTEMS. GUMMFD. 2014;28:217–222.
MLA Türkmenoğlu, Mustafa vd. “SNR CALCULATION METHOD FOR REMOTE SENSING SATELLITE IMAGING SYSTEMS”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, c. 28, sy. 2, 2014, ss. 217-22.
Vancouver Türkmenoğlu M, Şengül O, Demircioğlu E. SNR CALCULATION METHOD FOR REMOTE SENSING SATELLITE IMAGING SYSTEMS. GUMMFD. 2014;28(2):217-22.