BibTex RIS Kaynak Göster

KESİR DERECELİ TÜREVİN YENİ YAKLAŞIMININ ÖZELLİKLERİ

Yıl 2015, Cilt: 30 Sayı: 3, 0 - , 30.09.2015
https://doi.org/10.17341/gummfd.76509

Öz

Türev kavramı yaklaşık 300 yıllık bir geçmişi olan konudur. Türevin kesir dereceli olanı da uzun bir geçmişi olan konudur ve üzerinde çok fazla sayıda çalışma yapılmıştır. Bunun sebebi ise, fiziksel sistemlerin kesir dereceli türev ile daha iyi ifade edilebileceği; klasik türevin yerel modellemeye yaradığını, kesir dereceli türevin ise, global modellemeye yaradığının ortaya konulmasıdır. Fakat literatürde yer alan kesir dereceli türev yöntemlerinin eksiklikleri bulunmaktadır. Bu eksiklikler bu çalışmada kısaca gösterildikten sonra Karcı tarafında 2013 yılında kesir dereceli türev için yapılan yeni tanım verilecektir. Ondan sonra bu yeni tanımın klasik türev ile olan ilişkisi ortaya konulduktan sonra türev için verilen yeni tanımın bazı önemli özellikleri üzerinde durulacaktır. Türev işleminin sonucu vektörel büyüklük ve karmaşık sayılar da vektörel büyüklükler olduklarından bu iki kavram arasında bir ilişkinin olması gerekir. Bu çalışmada bu ilişki detaylı olarak ortaya konulacaktır.

Kaynakça

  • Newton, I., Philosophiæ Naturalis Principia Mathematica, 1687.
  • L'Hôpital, G., Analyse des Infiniment Petits pour l'Intelligence des Lignes Courbes ("Infinitesimal calculus with applications to curved lines"), Paris, 1696.
  • L'Hôpital, G., Analyse des infinement petits, Paris 1715.
  • Goldenbaum,U., Jesseph,D., Infinitesimal Differences: Controversies between Leibniz and his Contemporaries, New York, 2008.
  • Baron, M.E., The Origin of the Infinitesimal Calculus, New York, 1969.
  • Wren, F.L., Garrett, J.A., “ The Development of the Fundamental Concepts of Infinitesimal Analysis”, The American Mathematical Monthly, Cilt 40, No 5, 269-291, 1933.
  • Bliss, G.A., “ The Evolution of Problems of the Calculus of Variations”,The American Mathematical Monthly,Cilt 43, No 10, 598-609, 1936.
  • Taylor, A.E., “L’Hospital Rule”, The American Mathematical Monthly, Cilt 59, No 1, 20-24, 1952.
  • Stewart, J.K., “Another Variation of Newton's Method”, The American Mathematical Monthly, Cilt 58, No 5, 331-334, 1951.
  • Mullings, M.E.,”The Rotational Derivative and Some Applications”, The American Mathematical Monthly, Cilt 34, 241-247, 1927.
  • Dushnik, B.,”A Generalization of the Derivative of a Function”, The American Mathematical Monthly, Cilt 42, 414-419, 1935.
  • Newsom, C.V.,”On the Derivative of (w/sinw)k at w=0”, The American Mathematical Monthly, Cilt 38, 500-504, 1931.
  • McKiernan, M.,”On the nth Derivative of Composite Functions”, The American Mathematical Monthly, Cilt 63, 331-333, 1956.
  • Das, S., Functional Fractional Calculus, Springer-Verlag Berlin Heidelberg, 2011.
  • Herrmann, R., Fractional Calculus: An Introduction for physicists, World Scientific, GigaHedron, Germany, 2011.
  • Oldham, K.B., Spanier, J.,The Fractional Calculus, Academic Press, New York, 1974.
  • Samko, S.G., Ross, B.,“Integration and Differentiation to a Variable Fractional Order”, Integral Transforms and Special Functions, Cilt 1, No 4, 277–300, 1993.
  • Samko, S.G., Kilbas, A.A., Marichev, O.I., Fractional Integrals and Derivatives, Translated from the 1987 Russian Original, Gordon and Breach, Yverdon, 1993.
  • Kiryakova, V.S.,Generalized Fractional Calculus and Applications, Longman (Pitman Res. Notes in Math. Ser. 301), Harlow; co-publ.: J. Wiley and Sons, New York, 1994.
  • Rubin, B., “Fractional Integrals and Potentials”, Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 82, Longman, Harlow, 1996.
  • Gorenflo, R., Mainardi, F., “Fractional Oscillations and Mittag-Leffler Functions”, in: Proceedings of RAAM 1996, Kuwait University, 193–196, 1996.
  • Mainardi, F., Gorenflo, R., “On Mittag-Leffler-type functions in fractional evolution processes”, J. Comput. Appl. Math. Cilt 118, No 1-2, 283–299, 2000.
  • Mainardi, F., Fractional calculus and waves in linear viscoelasticity: An introduction to mathematical models, World Scientific, Singapore, 2010.
  • Podlubny, I., Fractional differential equations, Academic Press, New York, 1999.
  • Podlubny, I.,“Geometric and physical interpretation of fractional integration and fractional differentiation”, Fractional Calculus and Applied Analysis, Cilt 5, No 4, 367–386, 2002.
  • Pooseh, S., Almeida, R., Torres, D.F.M., “Discrete direct methods in the fractional calculus of variations”, Computers and Mathematics with Applications, Cilt 66, No 5, 668-676, 2013.
  • Mirevski, S.P., Boyadjiev, L., Scherer, R., “On the Riemann-Liouville Fractional Calculus, g-Jacobi Functions and F.Gauss Functions”, Applied Mathematics and Computation, Cilt 187, 315-325, 2007.
  • Schiavone, S.E., Lamb, W., “A Fractional Power Approach to Fractional Calculus”, Journal of Mathematical Analysis and Applications, Cilt 149, 377-401, 1990.
  • Bataineh, A.S., Alomari, A.K., Noorani, M.S.M., Hashim, I., Nazar, R., “Series Solutions of Systems of Nonlinear Fractional Differential Equations”, Acta Applied Mathematics, Cilt 105, 189-198, 2009.
  • Diethelm, K., Ford, N.J., Freed, A.D., Luchko, Y., “Algorithms fort he Fractional Calculus: A Selection of Numerical Methods”, Computer Methods in Applied Mechanics and Engineering, Cilt 194, 743-773, 2005.
  • Li, C., Chen, A., Ye,J., “Numerical Approaches to Fractional Calculus and Fractional Ordinary Differential Equation”, Journal of Computational Physics, Cilt 230, 3352-3368, 2011.
  • Atan Ö., Türk M., “Kesir Dereceli Kaotik Duffing Sisteminin Haar Dalgacık Yöntemiyle Analizi”, Elektrik-Elektronik ve Bilgisayar Sempozyumu, Elazığ , Ekim 2011.
  • Karcı, A., “Kesirli Türev için Yapılan Tanımlamaların Eksiklikleri ve Yeni Yaklaşım”, TOK-2013 Turkish Automatic Control National Meeting and Exhibition, Malatya/Turkey, s:1040-1045, Sep.26-28, 2013.
  • Karcı, A.,“A New Approach for Fractional Order Derivative and Its Applications”, Universal Journal of Engineering Sciences, Cilt 1, saNo 3, 110-117, 2013.
  • Karcı, A., Karadoğan, A.,“Fractional Order Derivative and Relationship between Derivative and Complex Functions”, IECMSA-2013:2nd International Eurasian Conference on Mathematical Sciences and Applications,Sarajevo, Bosnia and Herzogovina, 55-56, Aug. 26-29, 2013.
  • Karcı, A., Karadoğan, A., “Fractional Order Derivative and Relationship between Derivative and Complex Functions”, Mathematical Sciences and Applications E-Notes, Cilt 2, No 1, 44-54, 2014.
Toplam 36 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Makaleler
Yazarlar

Ali Karcı

Yayımlanma Tarihi 30 Eylül 2015
Gönderilme Tarihi 30 Eylül 2015
Yayımlandığı Sayı Yıl 2015 Cilt: 30 Sayı: 3

Kaynak Göster

APA Karcı, A. (2015). KESİR DERECELİ TÜREVİN YENİ YAKLAŞIMININ ÖZELLİKLERİ. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 30(3). https://doi.org/10.17341/gummfd.76509
AMA Karcı A. KESİR DERECELİ TÜREVİN YENİ YAKLAŞIMININ ÖZELLİKLERİ. GUMMFD. Ekim 2015;30(3). doi:10.17341/gummfd.76509
Chicago Karcı, Ali. “KESİR DERECELİ TÜREVİN YENİ YAKLAŞIMININ ÖZELLİKLERİ”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 30, sy. 3 (Ekim 2015). https://doi.org/10.17341/gummfd.76509.
EndNote Karcı A (01 Ekim 2015) KESİR DERECELİ TÜREVİN YENİ YAKLAŞIMININ ÖZELLİKLERİ. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 30 3
IEEE A. Karcı, “KESİR DERECELİ TÜREVİN YENİ YAKLAŞIMININ ÖZELLİKLERİ”, GUMMFD, c. 30, sy. 3, 2015, doi: 10.17341/gummfd.76509.
ISNAD Karcı, Ali. “KESİR DERECELİ TÜREVİN YENİ YAKLAŞIMININ ÖZELLİKLERİ”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 30/3 (Ekim 2015). https://doi.org/10.17341/gummfd.76509.
JAMA Karcı A. KESİR DERECELİ TÜREVİN YENİ YAKLAŞIMININ ÖZELLİKLERİ. GUMMFD. 2015;30. doi:10.17341/gummfd.76509.
MLA Karcı, Ali. “KESİR DERECELİ TÜREVİN YENİ YAKLAŞIMININ ÖZELLİKLERİ”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, c. 30, sy. 3, 2015, doi:10.17341/gummfd.76509.
Vancouver Karcı A. KESİR DERECELİ TÜREVİN YENİ YAKLAŞIMININ ÖZELLİKLERİ. GUMMFD. 2015;30(3).