Araştırma Makalesi
BibTex RIS Kaynak Göster

Jet uçağı ile taşınan bir faydalı yükün yapısal cevabının havacılık yapıları tasarımında kullanımı

Yıl 2022, Cilt: 37 Sayı: 3, 1341 - 1354, 28.02.2022
https://doi.org/10.17341/gazimmfd.898550

Öz

Jet tipi savaş uçağı ile taşınan bir faydalı yükün içindeki ekipmanların yapısal cevabı deneysel olarak çalışılmış, yapay sinir ağları(YSA) ile tahmin edilmiş ve askeri şartnamelerin önerdiği değerler ile karşılaştırılmıştır. Çalışmanın asıl amacı askeri şartnamelerin önerdiği cevap limitlerini, deneysel çalışmalar ile beraber değerlendirmek ve YSA temelli yeni bir yaklaşım önermektir. Çalışmada güdüm kitine sahip kütle ve geometri eşdeğer Mk-83 harp başlığı kullanılmıştır. Yetmiş beş farklı uçuş koşulu YSA eğitimleri için kullanılmıştır. Bu durumlardan ayrı olarak 8 adet uçuş koşulu ise eğitilen ağın testine yönelik kullanılmıştır. İvme verileri uçuş esnasında veri toplama sistemi ile toplanmıştır. Yapısal cevaplar ivme-güç spektrum yoğunluğu(İGTY) olarak frekans bandında işlenmiştir. Ölçümlerden alınan en yüksek yapısal cevap tahmininde normal tolerans limiti yöntemi kullanılmıştır. Yapısal tasarımlarda kullanılan rastgele titreşim tabanlı yükler, frekans-İGSY grafiklerinden üç-sigma kuralı ile 20-300Hz arası veriler dikkate alınarak çıkarılmıştır. Taşıyıcı bir yapısal parça üzerinde YSA tahmini yükleri, test yükleri ve askeri şartname yükleri uygulanarak topoloji eniyilemesi gerçekleştirilmiştir. Eniyileme sonucuna göre YSA tahmini ile elde edilen tasarım, askeri şartnamelerin önerdiği yük ile elde edilen tasarıma göre daha hafif olurken, aynı zamanda yeterli emniyet faktörüne de sahip olduğu gözlenmiştir.

Teşekkür

TÜBİTAK SAGE'ye teşekkür ederiz.

Kaynakça

  • Hall P.S., Vibration Test Level Criteria for Aircraft Equipment, Air Force Wright Aeronautical Lab, Wright-Patterson, AFB Ohio, 1980.
  • Burkhard A.H., Maurer O.F., Development and Use of Dynamic Qualification Standards for Air Force Stores, In: 53rd Meeting of The Advisory Group for Aerospace and Development (AGARD), Session 1-Overviews, pp. 1-1-1-7. Ohio: Wright Aeronautical Laboratories, Netherlands, 27 September-2 October 1981.
  • Van Tongeren J.H., Maas R., Derivation of shaker spectra for structural certification from helicopter flight test vibration measurements. In: International Conference on Noise and Vibration Engineering, Session DT, pp. 1759-1773. Leuven: Katolik University, Leuven, Belgium, 20-22 September 2010.
  • MIL-STD-8591, Airborne Stores, Suspension Equipment and Aircraft-Store Interface (Carriage Phase), 2005.
  • Nevius H.N., Brignac W.J., Dynamic Qualification Testing of F-16 Equipment, In: 53rd Meeting of The Advisory Group for Aerospace and Development (AGARD), Session 2-Applications, pp. 5-1-5-15. Ohio: Wright Aeronautical Laboratories, Netherlands, 27 September-2 October 1981.
  • Kim J., Park S., Eun W., Vibratory loads and response prediction for a high-speed flight vehicle during launch events. International Journal of Aeronautical & Space Science, 17(4): 551-564, 2016.
  • Lalanne C. Mechanical Vibration and Shock Analysis, Specification Development, John Wiley & Sons, 2013.
  • Runyan H.L., Some Recent Information on Aircraft Vibration due to Aerodynamic Sources. Report for NASA STI Facility. Virginia: NASA Langley Research Center., 1968.
  • O'Bannon D.E., Mau-12A/ A Bomb Ejector Rack Stress Analysis. Report for the Research and Technology Division Air Force Systems Command. Report no. WL TDR-64-33, New Mexico: Air Force Weapons Laboratory, June 1964.
  • Cumhurbaşkanlığı Savunma Sanayii Başkanlığı, Türk Savunma Sanayii Ürün Kataloğu, Güdümlü, Hassas Güdüm Kiti 82, 2019.
  • Steininger M., Haidl G., Vibration Qualification of External A/C Stores and Equipment. In: 53rd Meeting of The Advisory Group for Aerospace and Development (AGARD), Session 3-Applications, pp. 9-1-9-14. Ohio: Wright Aeronautical Laboratories, Netherlands, 27 September-2 October 1981.
  • Corda S., Franz R.J., In-Flight Vibration Environment of the NASA F-15B Flight Test Fixture. Report for NASA. Report no. NASA/TM-2002-210719, California: NASA Dryden Flight Research Center, February 2002.
  • Sevy R.W., Haller M.N., Computer Program for Vibration Prediction of Fighter Aircraft Equipment’s. Report for Combined Environments Test Group Environmental Control Branch Vehicle Equipment Division. Report no. AFFDL-TR-77-101, Ohio: Wright Aeronautical Laboratories November, 1977.
  • Yıldız E.N., Aeroelastic stability Prediction Using Flutter Flight Test Data. PhD Thesis, Middle East Technical University, Turkey, 2007.
  • Kutluay Ü., Mahmutyazıcıoğlu G., Platin B., An Application of Equation Error Method to Aerodynamic Model Identification and Parameter Estimation of a Gliding Flight Vehicle, AIAA Atmospheric Flight Mechanics Conference, Chicago, Illinois, 10 - 13 August 2009.
  • Quarante V., Dimino I., Experimental Training and Validation of a System for Aircraft Acoustic Signature Identification, AIAA Journal of Aircraft, 44(4):1196–1204, 2007.
  • Halle M. Thielecke F., Flight Load Estimation Using Local Networks In: 29th Congress of the International Council of the Aeronautical Sciences (ICAS), Vol. 1, pp. 2017-67. St Petersburg, 7-12 September 2014.
  • Das B.K., Kumar P., Tailoring of Specifications for Random Vibration Testing of Military Airborne Equipment’s from Measurement, International Journal of Research in Engineering and Technology, 4(12): 293-299, 2015.
  • Newland D.E., An Introduction to Random Vibrations, Spectral & Wavelet Analysis, Courier Corporation, 2012.
  • Chung Y.T., Krebs D.J., Peebles J.H., Estimation of Payload Random Vibration Loads for Proper Structural Design, AIAA /ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference and Exhibit, Seattle, AW, April 2001.
  • Edwards T.S., Probability of Future Observations Exceeding One-Sided, Normal, Upper Tolerance Limits, AIAA Journal of Spacecraft and Rockets Vol. 52, No. 2, March–April 2015.
  • Piersol A.G., Vibration and Acoustic Test Criteria for Captive Flight of Externally Carried Aircraft Stores, AFFDL-TR-71-158, Wright Patterson AFB, Ohio, 1971.
  • Bowker A.H., Lieberman, G.J., Engineering Statistics, 2nd ed., Prentice-Hall, Englewood Cliffs, NJ, 1972.
  • NASA Handbook 7005, Dynamic Environmental Criteria, Section 6, Computation of Maximum Expected Environment, March 13, 2001.
  • NASA-STD 7001B, Payload Vibroacoustic Test Criteria, November 07, 2017.
  • Paksoy A, Aradağ S. Artificial Neural Network Based Prediction of Time-Dependent Behavior for Lid-Driven Cavity Flows, Isı Bilimi ve Tekniği Dergisi (İng. Journal of Thermal Science & Technology), 2015.
  • Sharan A., Vijayaraju K, James D., Synthesis of In-Flight Strains Using Flight Parameters for a Fighter Aircraft, Journal of Aircraft, 50(2):469-477, 2013.
  • Piersol A.G., Procedures to Compute Maximum Structural Response from Predictions or Measurements at Selected Points, Shock and Vibration, Vol:3, No:3, 1996.
  • Department of Defense Test Method Standard, Environmental Engineering Considerations and Laboratory Tests, Department of Defense, Method 514.6, 2008.
  • PCB Piezotronics MTS Systems Corporation, Accelerometers, Model 353B02, Erişim tarihi: Şubat 02, 2021.
  • Schmid H., How to Use the FFT and Matlab’s Pwelch Function for Signal and Noise Simulations and Measurements. FHNW/IME., 2012.
  • Jerome S.C., Baca M.K., Skousen T.J., The Derivation of Maximum Predicted Environments for Externally Carried Stores from a Small Number of Flight Tests, 84th Shock and Vibration Symposium, Atlanta-Georgia, November 4-8, 2013.
  • AECTP 200, Environmental Conditions. North Atlantic Treaty Organization: Nasa Standardization Agency (NSA), 2006.
  • Draher J.F., Aircraft Equipment Random Vibration Test Criteria Based on Vibrations Induced by Turbulent Airflow Across Aircraft External Stores, Air Force Wright Aeronautical Lab, Wright-Patterson, AFB Ohio, 1983.
  • Kartman A.E., Empirical Prediction of Missile Flight Random Vibrations, The Bendix Corporation, Shock and Vibration Bulletin, The Shock and Vibration Information Center, December 1970.
  • Kaplan E.M., Özer M.B., Experimental Investigation of Flight and Physical Parameters Affecting the Vibration Response Severity of Subsystem Carried by Jet Aircraft, 9th Ankara International Aerospace Conference, Ankara-Türkiye, 20 -22 Eylül 2017.
  • Wafford J.H., Application of Mil-Std-810C Dynamic Requirements to USAF Avionics Procurements, In: 48rd Structures and Materials Panel Meeting, Williamsburg VA, USA, Session 2-Applications, pp. 5-1-5-15. Ohio: Wright Aeronautical Laboratories, April 1979.
  • VR&D GENESIS, Structural Analysis and Optimization Commercial Software, Vanderplaats Research & Development, Inc., Colorado-USA, 2010.
  • Dansk Standard Association, EN 485-2, Aluminum and Aluminum Alloys – Sheet, Strip and Plate – Part 2: Mechanical Properties, 2005.
  • MSC NASTRAN, Finite Element Solver, MSC Software Cooperation, California-USA, 2018

Structural Response Prediction and Comparison with Specification of a Payload Carried by a Jet Fighter

Yıl 2022, Cilt: 37 Sayı: 3, 1341 - 1354, 28.02.2022
https://doi.org/10.17341/gazimmfd.898550

Öz

Kaynakça

  • Hall P.S., Vibration Test Level Criteria for Aircraft Equipment, Air Force Wright Aeronautical Lab, Wright-Patterson, AFB Ohio, 1980.
  • Burkhard A.H., Maurer O.F., Development and Use of Dynamic Qualification Standards for Air Force Stores, In: 53rd Meeting of The Advisory Group for Aerospace and Development (AGARD), Session 1-Overviews, pp. 1-1-1-7. Ohio: Wright Aeronautical Laboratories, Netherlands, 27 September-2 October 1981.
  • Van Tongeren J.H., Maas R., Derivation of shaker spectra for structural certification from helicopter flight test vibration measurements. In: International Conference on Noise and Vibration Engineering, Session DT, pp. 1759-1773. Leuven: Katolik University, Leuven, Belgium, 20-22 September 2010.
  • MIL-STD-8591, Airborne Stores, Suspension Equipment and Aircraft-Store Interface (Carriage Phase), 2005.
  • Nevius H.N., Brignac W.J., Dynamic Qualification Testing of F-16 Equipment, In: 53rd Meeting of The Advisory Group for Aerospace and Development (AGARD), Session 2-Applications, pp. 5-1-5-15. Ohio: Wright Aeronautical Laboratories, Netherlands, 27 September-2 October 1981.
  • Kim J., Park S., Eun W., Vibratory loads and response prediction for a high-speed flight vehicle during launch events. International Journal of Aeronautical & Space Science, 17(4): 551-564, 2016.
  • Lalanne C. Mechanical Vibration and Shock Analysis, Specification Development, John Wiley & Sons, 2013.
  • Runyan H.L., Some Recent Information on Aircraft Vibration due to Aerodynamic Sources. Report for NASA STI Facility. Virginia: NASA Langley Research Center., 1968.
  • O'Bannon D.E., Mau-12A/ A Bomb Ejector Rack Stress Analysis. Report for the Research and Technology Division Air Force Systems Command. Report no. WL TDR-64-33, New Mexico: Air Force Weapons Laboratory, June 1964.
  • Cumhurbaşkanlığı Savunma Sanayii Başkanlığı, Türk Savunma Sanayii Ürün Kataloğu, Güdümlü, Hassas Güdüm Kiti 82, 2019.
  • Steininger M., Haidl G., Vibration Qualification of External A/C Stores and Equipment. In: 53rd Meeting of The Advisory Group for Aerospace and Development (AGARD), Session 3-Applications, pp. 9-1-9-14. Ohio: Wright Aeronautical Laboratories, Netherlands, 27 September-2 October 1981.
  • Corda S., Franz R.J., In-Flight Vibration Environment of the NASA F-15B Flight Test Fixture. Report for NASA. Report no. NASA/TM-2002-210719, California: NASA Dryden Flight Research Center, February 2002.
  • Sevy R.W., Haller M.N., Computer Program for Vibration Prediction of Fighter Aircraft Equipment’s. Report for Combined Environments Test Group Environmental Control Branch Vehicle Equipment Division. Report no. AFFDL-TR-77-101, Ohio: Wright Aeronautical Laboratories November, 1977.
  • Yıldız E.N., Aeroelastic stability Prediction Using Flutter Flight Test Data. PhD Thesis, Middle East Technical University, Turkey, 2007.
  • Kutluay Ü., Mahmutyazıcıoğlu G., Platin B., An Application of Equation Error Method to Aerodynamic Model Identification and Parameter Estimation of a Gliding Flight Vehicle, AIAA Atmospheric Flight Mechanics Conference, Chicago, Illinois, 10 - 13 August 2009.
  • Quarante V., Dimino I., Experimental Training and Validation of a System for Aircraft Acoustic Signature Identification, AIAA Journal of Aircraft, 44(4):1196–1204, 2007.
  • Halle M. Thielecke F., Flight Load Estimation Using Local Networks In: 29th Congress of the International Council of the Aeronautical Sciences (ICAS), Vol. 1, pp. 2017-67. St Petersburg, 7-12 September 2014.
  • Das B.K., Kumar P., Tailoring of Specifications for Random Vibration Testing of Military Airborne Equipment’s from Measurement, International Journal of Research in Engineering and Technology, 4(12): 293-299, 2015.
  • Newland D.E., An Introduction to Random Vibrations, Spectral & Wavelet Analysis, Courier Corporation, 2012.
  • Chung Y.T., Krebs D.J., Peebles J.H., Estimation of Payload Random Vibration Loads for Proper Structural Design, AIAA /ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference and Exhibit, Seattle, AW, April 2001.
  • Edwards T.S., Probability of Future Observations Exceeding One-Sided, Normal, Upper Tolerance Limits, AIAA Journal of Spacecraft and Rockets Vol. 52, No. 2, March–April 2015.
  • Piersol A.G., Vibration and Acoustic Test Criteria for Captive Flight of Externally Carried Aircraft Stores, AFFDL-TR-71-158, Wright Patterson AFB, Ohio, 1971.
  • Bowker A.H., Lieberman, G.J., Engineering Statistics, 2nd ed., Prentice-Hall, Englewood Cliffs, NJ, 1972.
  • NASA Handbook 7005, Dynamic Environmental Criteria, Section 6, Computation of Maximum Expected Environment, March 13, 2001.
  • NASA-STD 7001B, Payload Vibroacoustic Test Criteria, November 07, 2017.
  • Paksoy A, Aradağ S. Artificial Neural Network Based Prediction of Time-Dependent Behavior for Lid-Driven Cavity Flows, Isı Bilimi ve Tekniği Dergisi (İng. Journal of Thermal Science & Technology), 2015.
  • Sharan A., Vijayaraju K, James D., Synthesis of In-Flight Strains Using Flight Parameters for a Fighter Aircraft, Journal of Aircraft, 50(2):469-477, 2013.
  • Piersol A.G., Procedures to Compute Maximum Structural Response from Predictions or Measurements at Selected Points, Shock and Vibration, Vol:3, No:3, 1996.
  • Department of Defense Test Method Standard, Environmental Engineering Considerations and Laboratory Tests, Department of Defense, Method 514.6, 2008.
  • PCB Piezotronics MTS Systems Corporation, Accelerometers, Model 353B02, Erişim tarihi: Şubat 02, 2021.
  • Schmid H., How to Use the FFT and Matlab’s Pwelch Function for Signal and Noise Simulations and Measurements. FHNW/IME., 2012.
  • Jerome S.C., Baca M.K., Skousen T.J., The Derivation of Maximum Predicted Environments for Externally Carried Stores from a Small Number of Flight Tests, 84th Shock and Vibration Symposium, Atlanta-Georgia, November 4-8, 2013.
  • AECTP 200, Environmental Conditions. North Atlantic Treaty Organization: Nasa Standardization Agency (NSA), 2006.
  • Draher J.F., Aircraft Equipment Random Vibration Test Criteria Based on Vibrations Induced by Turbulent Airflow Across Aircraft External Stores, Air Force Wright Aeronautical Lab, Wright-Patterson, AFB Ohio, 1983.
  • Kartman A.E., Empirical Prediction of Missile Flight Random Vibrations, The Bendix Corporation, Shock and Vibration Bulletin, The Shock and Vibration Information Center, December 1970.
  • Kaplan E.M., Özer M.B., Experimental Investigation of Flight and Physical Parameters Affecting the Vibration Response Severity of Subsystem Carried by Jet Aircraft, 9th Ankara International Aerospace Conference, Ankara-Türkiye, 20 -22 Eylül 2017.
  • Wafford J.H., Application of Mil-Std-810C Dynamic Requirements to USAF Avionics Procurements, In: 48rd Structures and Materials Panel Meeting, Williamsburg VA, USA, Session 2-Applications, pp. 5-1-5-15. Ohio: Wright Aeronautical Laboratories, April 1979.
  • VR&D GENESIS, Structural Analysis and Optimization Commercial Software, Vanderplaats Research & Development, Inc., Colorado-USA, 2010.
  • Dansk Standard Association, EN 485-2, Aluminum and Aluminum Alloys – Sheet, Strip and Plate – Part 2: Mechanical Properties, 2005.
  • MSC NASTRAN, Finite Element Solver, MSC Software Cooperation, California-USA, 2018
Toplam 40 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Engin Metin Kaplan 0000-0002-8576-4071

Erdem Acar 0000-0002-3661-5563

Mehmet Bülent Özer 0000-0002-0380-5125

Yayımlanma Tarihi 28 Şubat 2022
Gönderilme Tarihi 17 Mart 2021
Kabul Tarihi 27 Eylül 2021
Yayımlandığı Sayı Yıl 2022 Cilt: 37 Sayı: 3

Kaynak Göster

APA Kaplan, E. M., Acar, E., & Özer, M. B. (2022). Jet uçağı ile taşınan bir faydalı yükün yapısal cevabının havacılık yapıları tasarımında kullanımı. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 37(3), 1341-1354. https://doi.org/10.17341/gazimmfd.898550
AMA Kaplan EM, Acar E, Özer MB. Jet uçağı ile taşınan bir faydalı yükün yapısal cevabının havacılık yapıları tasarımında kullanımı. GUMMFD. Şubat 2022;37(3):1341-1354. doi:10.17341/gazimmfd.898550
Chicago Kaplan, Engin Metin, Erdem Acar, ve Mehmet Bülent Özer. “Jet uçağı Ile taşınan Bir Faydalı yükün yapısal cevabının havacılık yapıları tasarımında kullanımı”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 37, sy. 3 (Şubat 2022): 1341-54. https://doi.org/10.17341/gazimmfd.898550.
EndNote Kaplan EM, Acar E, Özer MB (01 Şubat 2022) Jet uçağı ile taşınan bir faydalı yükün yapısal cevabının havacılık yapıları tasarımında kullanımı. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 37 3 1341–1354.
IEEE E. M. Kaplan, E. Acar, ve M. B. Özer, “Jet uçağı ile taşınan bir faydalı yükün yapısal cevabının havacılık yapıları tasarımında kullanımı”, GUMMFD, c. 37, sy. 3, ss. 1341–1354, 2022, doi: 10.17341/gazimmfd.898550.
ISNAD Kaplan, Engin Metin vd. “Jet uçağı Ile taşınan Bir Faydalı yükün yapısal cevabının havacılık yapıları tasarımında kullanımı”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 37/3 (Şubat 2022), 1341-1354. https://doi.org/10.17341/gazimmfd.898550.
JAMA Kaplan EM, Acar E, Özer MB. Jet uçağı ile taşınan bir faydalı yükün yapısal cevabının havacılık yapıları tasarımında kullanımı. GUMMFD. 2022;37:1341–1354.
MLA Kaplan, Engin Metin vd. “Jet uçağı Ile taşınan Bir Faydalı yükün yapısal cevabının havacılık yapıları tasarımında kullanımı”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, c. 37, sy. 3, 2022, ss. 1341-54, doi:10.17341/gazimmfd.898550.
Vancouver Kaplan EM, Acar E, Özer MB. Jet uçağı ile taşınan bir faydalı yükün yapısal cevabının havacılık yapıları tasarımında kullanımı. GUMMFD. 2022;37(3):1341-54.