Araştırma Makalesi
BibTex RIS Kaynak Göster

Çok ürünlü özdeş makineli iki sıralı tesis düzenleme problemi için matematiksel model önerileri

Yıl 2022, Cilt: 37 Sayı: 4, 1855 - 1868, 28.02.2022
https://doi.org/10.17341/gazimmfd.958700

Öz

İki sıralı tesis düzenleme problemi (İSTDP), esnek imalat sistemlerinde sıklıkla kullanılan bir yerleşim biçimidir. Bu tesis düzeninde bölümler veya makineler, taşıma araçlarının ve çalışanların kullanımı için ayrılmış olan bir koridorun iki kenarı boyunca sıralanırlar. Problem, tesis içerisindeki taşıma maliyetlerini minimize etmek amacıyla, makinelerin koridorun hangi tarafında yer alacağının ve bulundukları sıra üzerindeki kesin konumlarının belirlenmesini içermektedir. Bu çalışmada, farklı işlem rotalarına sahip çok ürünlü bir İSTDP üzerine odaklanılmıştır. Ele alınan problemde özdeş makinenin olmadığı ve özdeş makineye sahip senaryolar için yeni karma tam sayılı matematiksel modeller geliştirilmiştir. Geliştirilen modellerin etkinliği, rassal olarak üretilen test problemleri üzerinde değerlendirilmiştir. Küçük boyutlu problemler için optimal çözümler elde edilirken, büyük boyutlu problemler için belirlenen çözüm süresi sonunda bulunan çözüm değerleri raporlanmıştır.

Kaynakça

  • 1. Tompkins J.A., White J.A., Bozer Y.A., Tanchoco J.M.A., Facilities planning: John Wiley & Sons, 2010.
  • 2. Solimanpur M., Jafari A., Optimal solution for the two-dimensional facility layout problem using a branch-and-bound algorithm, Comput Ind Eng, 55 (3), 606-619, 2008.
  • 3. Deb S.K., Bhattacharyya B., Fuzzy decision support system for manufacturing facilities layout planning, Decis Support Syst, 40 (2), 305-314, 2005.
  • 4. Kang S., Kim M., Chae J., A closed loop based facility layout design using a cuckoo search algorithm, Expert Syst Appl, 93, 322-335, 2018.
  • 5. Karateke H., Şahin R., A two-stage approach for the multi-floor facility layout problem: Benders decomposition algorithm, Journal of the Faculty of Engineering and Architecture of Gazi University, 36 (2), 953-970, 2021.
  • 6. Şahin R., A simulated annealing heuristic for the dynamic facility layout problem, Journal of the Faculty of Engineering and Architecture of Gazi University, 23 (4), 863-870, 2008.
  • 7. Niroomand S., Hadi-Vencheh A., Şahin R., Vizvári B., Modified migrating birds optimization algorithm for closed loop layout with exact distances in flexible manufacturing systems, Expert Syst Appl, 42 (19), 6586-6597, 2015.
  • 8. Chung J., Tanchoco J.M.A., The double row layout problem, Int. J. Prod. Res., 48 (3), 709-727, 2008.
  • 9. Wang S., Zuo X., Liu X., Zhao X., Li J., Solving dynamic double row layout problem via combining simulated annealing and mathematical programming, Appl. Soft Comput., 37, 303-310, 2015.
  • 10. Amaral A.R.S., Optimal solutions for the double row layout problem, Optim. Lett., 7 (2), 407-413, 2013.
  • 11. Amaral A.R.S., A mixed-integer programming formulation for the double row layout of machines in manufacturing systems, Int. J. Prod. Res., 57 (1), 34-47, 2018.
  • 12. Secchin L.D., Amaral A.R.S., An improved mixed-integer programming model for the double row layout of facilities, Optim. Lett., 13 (1), 193-199, 2018.
  • 13. Chae J., Regan A.C., A mixed integer programming model for a double row layout problem, Comput Ind Eng, 140, 106244, 2020.
  • 14. Heragu S.S., Kusiak A., Machine layout problem in flexible manufacturing systems, Oper. Res., 36 (2), 258-268, 1988.
  • 15. Solimanpur M., Vrat P., Shankar R., An ant algorithm for the single row layout problem in flexible manufacturing systems, Comput. Oper. Res., 32 (3), 583-598, 2005.
  • 16. Simmons D.M., One-dimensional space allocation: an ordering algorithm, Oper. Res., 17 (5), 812-826, 1969.
  • 17. Amaral A.R., A new lower bound for the single row facility layout problem, Discrete Appl. Math., 157 (1), 183-190, 2009.
  • 18. Amaral A.R., Letchford A.N., A polyhedral approach to the single row facility layout problem, Math. Program., 141 (1), 453-477, 2013.
  • 19. Anjos M.F., Yen G., Provably near-optimal solutions for very large single-row facility layout problems, Optimization Methods & Software, 24 (4-5), 805-817, 2009.
  • 20. Hungerländer P., Rendl F., A computational study and survey of methods for the single-row facility layout problem, Comput. Optim. Appl., 55 (1), 1-20, 2013.
  • 21. Anjos M.F., Vannelli A., Computing globally optimal solutions for single-row layout problems using semidefinite programming and cutting planes, INFORMS Journal on Computing, 20 (4), 611-617, 2008.
  • 22. Durmaz E.D., Şahin R., NSGA-II and goal programming approach for the multi-objective single row facility layout problem, Journal of the Faculty of Engineering and Architecture of Gazi University, 32 (3), 941-955, 2017.
  • 23. Guan J., Lin G., Hybridizing variable neighborhood search with ant colony optimization for solving the single row facility layout problem, Eur. J. Oper. Res., 248 (3), 899-909, 2016.
  • 24. Kothari R., Ghosh D., An efficient genetic algorithm for single row facility layout, Optim. Lett., 8 (2), 679-690, 2014.
  • 25. Ou-Yang C., Utamima A., Hybrid estimation of distribution algorithm for solving single row facility layout problem, Comput Ind Eng, 66 (1), 95-103, 2013.
  • 26. Samarghandi H., Eshghi K., An efficient tabu algorithm for the single row facility layout problem, Eur. J. Oper. Res., 205 (1), 98-105, 2010.
  • 27. Samarghandi H., Taabayan P., Jahantigh F.F., A particle swarm optimization for the single row facility layout problem, Comput Ind Eng, 58 (4), 529-534, 2010.
  • 28. Şahin R., Niroomand S., Durmaz E.D., Molla-Alizadeh-Zavardehi S., Mathematical formulation and hybrid meta-heuristic solution approaches for dynamic single row facility layout problem, Annals of Operations Research, 295 (1), 313-336, 2020.
  • 29. Cravo G.L., Amaral A.R., A GRASP algorithm for solving large-scale single row facility layout problems, Comput. Oper. Res., 106, 49-61, 2019.
  • 30. Palubeckis G., Single row facility layout using multi-start simulated annealing, Comput Ind Eng, 103, 1-16, 2017.
  • 31. Keller B., Buscher U., Single row layout models, European Journal of Operational Research, 245 (3), 629-644, 2015.
  • 32. Zhang Z., Murray C.C., A corrected formulation for the double row layout problem, Int. J. Prod. Res., 50 (15), 4220-4223, 2012.
  • 33. Murray C.C., Smith A.E., Zhang Z., An efficient local search heuristic for the double row layout problem with asymmetric material flow, Int. J. Prod. Res., 51 (20), 6129-6139, 2013.
  • 34. Zuo X., Murray C.C., Smith A.E., Solving an Extended Double Row Layout Problem Using Multiobjective Tabu Search and Linear Programming, IEEE Trans. Autom. Sci. Eng., 11 (4), 1122-1132, 2014.
  • 35. Zuo X.Q., Murray C.C., Smith A.E., Sharing clearances to improve machine layout, Int. J. Prod. Res., 54 (14), 4272-4285, 2016.
  • 36. Zuo X., Liu X., Zhang Q., Li W., Wan X., Zhao X., MOEA/D With Linear Programming for Double Row Layout Problem With Center-Islands, IEEE Trans. Cybern., 1-13, 2019.
  • 37. Gülşen M., Murray C.C., Smith A.E., Double-row facility layout with replicate machines and split flows, Comput. Oper. Res., 108, 20-32, 2019.
  • 38. Guan J., Lin G., Feng H.-B., Ruan Z.-Q., A decomposition-based algorithm for the double row layout problem, Appl. Math. Modell., 77, 963-979, 2020.
  • 39. Amaral A.R., A mixed-integer programming formulation of the double row layout problem based on a linear extension of a partial order, Optim. Lett., 1-17, 2020.
  • 40. Amaral A.R., A heuristic approach for the double row layout problem, Annals of Operations Research, 1-36, 2020.
  • 41. Chen D.-S., Wang Q., Chen H.-C., Linear sequencing for machine layouts by a modified simulated annealing, Int. J. Prod. Res., 39 (8), 1721-1732, 2001.
  • 42. Lenin N., Kumar M.S., Islam M.N., Ravindran D., Multi-objective optimization in single-row layout design using a genetic algorithm, Int. J. Adv. Manuf. Technol., 67 (5-8), 1777-1790, 2013.
  • 43. Lenin N., Siva Kumar M., Ravindran D., Islam M.N., A tabu search for multi-objective single row facility layout problem, Journal of Advanced Manufacturing Systems, 13 (01), 17-40, 2014.
  • 44. Lenin N., Siva Kumar M., Harmony search algorithm for simultaneous minimization of bi-objectives in multi-row parallel machine layout problem, Evolutionary Intelligence, 1-28, 2020.
Toplam 44 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Esra Duygu Durmaz 0000-0002-8882-333X

Ramazan Şahin 0000-0001-7074-4038

Yayımlanma Tarihi 28 Şubat 2022
Gönderilme Tarihi 28 Haziran 2021
Kabul Tarihi 6 Kasım 2021
Yayımlandığı Sayı Yıl 2022 Cilt: 37 Sayı: 4

Kaynak Göster

APA Durmaz, E. D., & Şahin, R. (2022). Çok ürünlü özdeş makineli iki sıralı tesis düzenleme problemi için matematiksel model önerileri. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 37(4), 1855-1868. https://doi.org/10.17341/gazimmfd.958700
AMA Durmaz ED, Şahin R. Çok ürünlü özdeş makineli iki sıralı tesis düzenleme problemi için matematiksel model önerileri. GUMMFD. Şubat 2022;37(4):1855-1868. doi:10.17341/gazimmfd.958700
Chicago Durmaz, Esra Duygu, ve Ramazan Şahin. “Çok ürünlü özdeş Makineli Iki sıralı Tesis düzenleme Problemi için Matematiksel Model önerileri”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 37, sy. 4 (Şubat 2022): 1855-68. https://doi.org/10.17341/gazimmfd.958700.
EndNote Durmaz ED, Şahin R (01 Şubat 2022) Çok ürünlü özdeş makineli iki sıralı tesis düzenleme problemi için matematiksel model önerileri. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 37 4 1855–1868.
IEEE E. D. Durmaz ve R. Şahin, “Çok ürünlü özdeş makineli iki sıralı tesis düzenleme problemi için matematiksel model önerileri”, GUMMFD, c. 37, sy. 4, ss. 1855–1868, 2022, doi: 10.17341/gazimmfd.958700.
ISNAD Durmaz, Esra Duygu - Şahin, Ramazan. “Çok ürünlü özdeş Makineli Iki sıralı Tesis düzenleme Problemi için Matematiksel Model önerileri”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 37/4 (Şubat 2022), 1855-1868. https://doi.org/10.17341/gazimmfd.958700.
JAMA Durmaz ED, Şahin R. Çok ürünlü özdeş makineli iki sıralı tesis düzenleme problemi için matematiksel model önerileri. GUMMFD. 2022;37:1855–1868.
MLA Durmaz, Esra Duygu ve Ramazan Şahin. “Çok ürünlü özdeş Makineli Iki sıralı Tesis düzenleme Problemi için Matematiksel Model önerileri”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, c. 37, sy. 4, 2022, ss. 1855-68, doi:10.17341/gazimmfd.958700.
Vancouver Durmaz ED, Şahin R. Çok ürünlü özdeş makineli iki sıralı tesis düzenleme problemi için matematiksel model önerileri. GUMMFD. 2022;37(4):1855-68.