Araştırma Makalesi
BibTex RIS Kaynak Göster

Investigation on mechanical performances of various cellular structures produced by fused deposition modeling (FDM) method

Yıl 2023, Cilt: 38 Sayı: 1, 201 - 218, 21.06.2022
https://doi.org/10.17341/gazimmfd.945650

Öz

In this study, honeycomb structure with positive Poisson ratio (PO), re-entrant structure with negative PO, hybrid structure which is a combination of honeycomb and re-entrant structure and finally chiral structures were produced from PLA material by fused deposition modelling (FDM). Then, the effects of rib thickness and direction of the unit cell on the mechanical performances of these cellular structures were investigated experimentally in tension and compression conditions. As a result of tension and compression tests of cellular structured which are manufactured by FDM method, their elasticity modulus (EM), tensile strength (TS), compression strength (CS), absorbed energy (AE) and specific absorbed energy (SAE) were determined besides their Poisson ratios (PR). In addition to these findings obtained via mechanical tests, the hardness values and surface roughness values of the produced cellular structured samples were also measured. According to the results, it was determined that the direction and rib thickness of the unit cells in cellular structures significantly affect the mechanical performance of the cellular structures. While the TS and CS of the cellular structures increase with increasing rib thickness, the surface roughness and hardness values were measured as 14 µm and 75 Shore D, respectively. Although negative PO was observed in re-entrant, chiral and hybrid structures depending on the amount of deformation, positive PO was observed in honeycomb structures as expected. B thickness 0.5 mm and unit cells of the honeycomb structure (Hy 0.5) and the re-entrant structure (Ry 0.5) facing the y direction have the maximum AE and SAE values in tension and compression conditions, respectively. In addition, honeycomb structure and re-entrant structure have rib thickness of 0,5 mm and unit cells on y direction (Hy 0,5 and Ry 0,5) presents maximum AE and SAE values in order of tension and compression cases.

Kaynakça

  • 1. Maconachie T., Leary M., Lozanovski B., Zhang X., Qian M., Faruque O., Brandt M., SLM lattice structures: Properties, performance, applications and challenges, Materials & Design, 183, 108137, 2019.
  • 2. Helou M., & Kara S., Design, analysis and manufacturing of lattice structures: an overview, International Journal of Computer Integrated Manufacturing, 31 (3), 243-261, 2018.
  • 3. Alomar Z., & Concli F., Compressive behavior assessment of a newly developed circular cell-based lattice structure, Materials & Design, 205, 109716, 2021.
  • 4. Gibson L.J., & Ashby M.F., Cellular Solids: Structure and Properties, Cambridge University Press, 1999.
  • 5. Zhang Y., Xiao M., Zhang X., Gao L., Topological design of sandwich structures with graded cellular cores by multiscale optimization, Computer Methods in Applied Mechanics, 361, 112749, 2020.
  • 6. Simpson J., & Kazancı Z., Crushing investigation of crash boxes filled with honeycomb and re-entrant (auxetic) lattices, Thin-Walled Structures, 150, 106676, 2020.
  • 7. Kolken H.M.A., Janbaz S., Leeflang S.M.A., Lietaert K., Weinans H.H., Zadpoor A.A., Rationally designed meta-implants: A combination of auxetic and conventional meta-biomaterials, Mater. Horizons, 5 (1), 28-35, 2018.
  • 8. Jenett B., Calisch S., Cellucci D., Cramer N., Gershenfeld N., Swei S., Cheung K.C., Digital Morphing Wing: Active Wing Shaping Concept Using Composite Lattice-Based Cellular Structures, Soft Rob., 4 (1), 33-48, 2017.
  • 9. Chua C.K., & Leong K.F., 3D printing and additive manufacturing: Principles and applications, World Scientific Publishing Company, Fifth Edition of Rapid Prototyping, 2016.
  • 10. Yalçın B., & Ergene B., Endüstride Yeni Eğilim Olan 3-B Eklemeli İmalat Teknolojisi ve Metalurjisi, SDÜ. Uluslararası Teknolojik Araştırmalar Dergisi, 9 (3), 65-88, 2017.
  • 11. Qi C., Jiang F., Remennikov A., Pei L.Z., Liu J., Wang J.S., Liao X.W., Yang S., Quasi-static crushing behavior of novel re-entrant circular auxetic honeycombs, Composites Part B, 197, 108117, 2020.
  • 12. Wang S., Zhang M., Wang Y., Huang Z., Fang Y., Experimental studies on quasi-static axial crushing of additively-manufactured PLA random honeycomb-filled double circular tubes, Composite Structures, 261, 113553, 2021.
  • 13. Görgülüarslan R.M., Kafes yapı tasarım ve optimizasyonunda kullanılan geometrik sınırların eklemeli imalat kısıtlarına bağlı olarak belirlenmesi, Journal of the Faculty of Engineering and Architecture of Gazi University, 36 (2), 607-626, 2021.
  • 14. Ingrole A., Hao A. & Liang R., Design and modeling of auxetic and hybrid honeycomb structures for in-plane property enhancement, Materials & Design, 117, 72–83, 2017.
  • 15. Panda B., Leite M., Biswal B.B., Niu X. & Garg A., Experimental and numerical modelling of mechanical properties of 3D printed honeycomb structures. Measurement, 116, 495-506, 2018.
  • 16. Alomarah A., Masood S.H., Ruan D., Out-of-plane and in-plane compression of additively manufactured auxetic structures, Aerospace Science and Technology, 106, 106107, 2020.
  • 17. Ali M.H., Batai S., Karim D., Material minimization in 3D printing with novel hybrid cellular structures, Materialstoday:Proceedings, 42 (5), 1800-1809, 2021.
  • 18. Kucewicz M., Baranowski P., Malachowski J., Poplawski A. & Platek P., Modelling, and characterization of 3D printed cellular structures, Materials & Design, 142, 177-189, 2018.
  • 19. Ergene B., & Yalçın B., 4 boyutlu baskı teknolojisi ve uygulama alanlarının araştırılması, International Journal of the Technological Science, 12 (3), 108-117, 2020.
  • 20. Liu K., Han L., Hu W., Ji L., Zhu S., Wan Z., Yang X., Wei Y., Dai Z., Zhao Z., Li Z., Wang P., Tao R., 4D printed zero Poisson's ratio metamaterial with switching function of mechanical and vibration isolation performance, Materials & Design, 196, 109153, 2020.
  • 21. Broccolo S.D., Laurenzi S., Scarpa F., Auxhex – A Kirigami inspired zero Poisson’s ratio cellular structure, Composite Structures, 176, 433-441, 2017.
  • 22. Standard Test Method for Tensile Properties of Plastics, https://www.astm.org/Standards/D638 , Erişim tarihi: Mayıs 10, 2021.
  • 23. Dong Z., Li Y., Zhao T., Wu W., Xiao D., Liang J., Experimental and numerical studies on the compressive mechanical properties of the metallic auxetic reentrant honeycomb, Materials & Design, 182, 108036, 2019.
  • 24. Xiao D., Dong Z., Li Y., Wu W., Fang D., Compression behavior of the graded metallic auxetic reentrant honeycomb: Experiment and finite element analysis, Materials Science & Engineering A, 758, 163-171, 2019.
  • 25. Bhate D., Soest J., Reeher J., Patel D., Gibson D., Gerbasi J. & Finfrock M., A validated methodology for predicting the mechanical behavior of Ultem-9085 honeycomb structures manufactured by fused deposition modeling, 27th Annual International Solid Freeform Fabrication Symposium - An Additive Manufacturing Conference, 1-12, 2016.
  • 26. Yalçın B., Ergene B. & Şekeroğlu İ., The Influence of Rib Thickness and Cell Orientation on Tensile Behaviour of various topologies produced from Abs material with additive manufacturing. 5th International Conference on Advances in Mechanical Engineering, Istanbul, 416-421, 17-19 December, 2019.
  • 27. Habib F.N., Lovenitti P., Masood S.H. & Nikzad M., In-plane energy absorption evaluation of 3D printed polymeric honeycombs, Virtual and Physical Prototyping, 12 (2), 117-131, 2017.
  • 28. Zhang X. & Yang D., Mechanical Properties of Auxetic Cellular Material Consisting of Re-Entrant Hexagonal Honeycombs, Materials, 9 (11), 1-13, 2016.
  • 29. Dudka A.A., Platek P., Durejko T., Baranowski P., Malachowski J., Sarzynski M. & Czujko T., Static and Dynamic Loading Behavior of Ti6Al4V Honeycomb Structures Manufactured by Laser Engineered Net Shaping (LENSTM) Technology. Materials, 12 (8), 1-20, 2019.
  • 30. Lee J.W., Soman P., Park J.H., Chen S. & Cho D.W., A Tubular Biomaterial Construct Exhibiting a Negative Poisson’s Ratio. PLOS ONE, 11 (5), 1-14, 2016.

Eriyik yığma modelleme (EYM) ile üretilen çeşitli hücresel yapıların mekanik performanslarının incelenmesi

Yıl 2023, Cilt: 38 Sayı: 1, 201 - 218, 21.06.2022
https://doi.org/10.17341/gazimmfd.945650

Öz

Bu çalışmada eriyik yığarak modelleme metoduyla PLA malzemeden pozitif Poisson oranına (PO) sahip bal peteği yapı, negatif PO’na sahip re-entrant yapı, balpeteği ve re-entrant yapının bir kombinasyonu olan hibrit yapı ve son olarak da kiral yapılar üretilmiştir. Daha sonra, bu hücresel yapılarda kiriş kalınlığının ve birim hücrenin yönünün mekanik performanslarına etkisi çekme ve basma durumunda deneysel olarak incelenmiştir. EYM metoduyla üretilen hücresel yapıların çekme ve basma testleri sonucunda elastisite modül (EM) değerleri, çekme dayanımı (ÇD), basma dayanımı (BD), absorbe ettikleri enerji (AEE) ve spesifik absorbe ettikleri enerji (SAEE) miktarlarının yanı sıra Poisson oranları da tespit edilmiştir. Ayrıca, mekanik testler aracılığı ile elde edilen bu bulguların dışında, üretilmiş hücresel yapılı numunelerin sertlik değerleri ve yüzey pürüzlülük değerleri de ölçülmüştür. Elde edilen sonuçlara göre, hücresel yapılardaki birim hücrelerin yönünün ve kiriş kalınlıklarının hücresel yapıların mekanik performansını önemli düzeyde etkilediği tespit edilmiştir. Hücresel yapıların ÇD ve BD’ları artan kiriş kalınlığı ile birlikte artış gösterirken, yüzey pürüzlülük ve sertlik değerleri sırasıyla ortalama 14 µm ve 75 Shore D olarak ölçülmüştür. Re-entrant, kiral ve hibrit yapıda deformasyon miktarına bağlı olarak negatif PO gözlemlenmesine rağmen, balpeteği yapılarda beklendiği üzere pozitif PO görülmüştür. Ayrıca, çekme ve basma durumunda sırasıyla kiriş kalınlığı 0,5 mm ve birim hücreleri y yönüne bakan balpeteği yapı (Hy 0,5) ve re-entrant yapı (Ry 0,5) maksimum AEE ve SAEE sergilemektedirler.

Kaynakça

  • 1. Maconachie T., Leary M., Lozanovski B., Zhang X., Qian M., Faruque O., Brandt M., SLM lattice structures: Properties, performance, applications and challenges, Materials & Design, 183, 108137, 2019.
  • 2. Helou M., & Kara S., Design, analysis and manufacturing of lattice structures: an overview, International Journal of Computer Integrated Manufacturing, 31 (3), 243-261, 2018.
  • 3. Alomar Z., & Concli F., Compressive behavior assessment of a newly developed circular cell-based lattice structure, Materials & Design, 205, 109716, 2021.
  • 4. Gibson L.J., & Ashby M.F., Cellular Solids: Structure and Properties, Cambridge University Press, 1999.
  • 5. Zhang Y., Xiao M., Zhang X., Gao L., Topological design of sandwich structures with graded cellular cores by multiscale optimization, Computer Methods in Applied Mechanics, 361, 112749, 2020.
  • 6. Simpson J., & Kazancı Z., Crushing investigation of crash boxes filled with honeycomb and re-entrant (auxetic) lattices, Thin-Walled Structures, 150, 106676, 2020.
  • 7. Kolken H.M.A., Janbaz S., Leeflang S.M.A., Lietaert K., Weinans H.H., Zadpoor A.A., Rationally designed meta-implants: A combination of auxetic and conventional meta-biomaterials, Mater. Horizons, 5 (1), 28-35, 2018.
  • 8. Jenett B., Calisch S., Cellucci D., Cramer N., Gershenfeld N., Swei S., Cheung K.C., Digital Morphing Wing: Active Wing Shaping Concept Using Composite Lattice-Based Cellular Structures, Soft Rob., 4 (1), 33-48, 2017.
  • 9. Chua C.K., & Leong K.F., 3D printing and additive manufacturing: Principles and applications, World Scientific Publishing Company, Fifth Edition of Rapid Prototyping, 2016.
  • 10. Yalçın B., & Ergene B., Endüstride Yeni Eğilim Olan 3-B Eklemeli İmalat Teknolojisi ve Metalurjisi, SDÜ. Uluslararası Teknolojik Araştırmalar Dergisi, 9 (3), 65-88, 2017.
  • 11. Qi C., Jiang F., Remennikov A., Pei L.Z., Liu J., Wang J.S., Liao X.W., Yang S., Quasi-static crushing behavior of novel re-entrant circular auxetic honeycombs, Composites Part B, 197, 108117, 2020.
  • 12. Wang S., Zhang M., Wang Y., Huang Z., Fang Y., Experimental studies on quasi-static axial crushing of additively-manufactured PLA random honeycomb-filled double circular tubes, Composite Structures, 261, 113553, 2021.
  • 13. Görgülüarslan R.M., Kafes yapı tasarım ve optimizasyonunda kullanılan geometrik sınırların eklemeli imalat kısıtlarına bağlı olarak belirlenmesi, Journal of the Faculty of Engineering and Architecture of Gazi University, 36 (2), 607-626, 2021.
  • 14. Ingrole A., Hao A. & Liang R., Design and modeling of auxetic and hybrid honeycomb structures for in-plane property enhancement, Materials & Design, 117, 72–83, 2017.
  • 15. Panda B., Leite M., Biswal B.B., Niu X. & Garg A., Experimental and numerical modelling of mechanical properties of 3D printed honeycomb structures. Measurement, 116, 495-506, 2018.
  • 16. Alomarah A., Masood S.H., Ruan D., Out-of-plane and in-plane compression of additively manufactured auxetic structures, Aerospace Science and Technology, 106, 106107, 2020.
  • 17. Ali M.H., Batai S., Karim D., Material minimization in 3D printing with novel hybrid cellular structures, Materialstoday:Proceedings, 42 (5), 1800-1809, 2021.
  • 18. Kucewicz M., Baranowski P., Malachowski J., Poplawski A. & Platek P., Modelling, and characterization of 3D printed cellular structures, Materials & Design, 142, 177-189, 2018.
  • 19. Ergene B., & Yalçın B., 4 boyutlu baskı teknolojisi ve uygulama alanlarının araştırılması, International Journal of the Technological Science, 12 (3), 108-117, 2020.
  • 20. Liu K., Han L., Hu W., Ji L., Zhu S., Wan Z., Yang X., Wei Y., Dai Z., Zhao Z., Li Z., Wang P., Tao R., 4D printed zero Poisson's ratio metamaterial with switching function of mechanical and vibration isolation performance, Materials & Design, 196, 109153, 2020.
  • 21. Broccolo S.D., Laurenzi S., Scarpa F., Auxhex – A Kirigami inspired zero Poisson’s ratio cellular structure, Composite Structures, 176, 433-441, 2017.
  • 22. Standard Test Method for Tensile Properties of Plastics, https://www.astm.org/Standards/D638 , Erişim tarihi: Mayıs 10, 2021.
  • 23. Dong Z., Li Y., Zhao T., Wu W., Xiao D., Liang J., Experimental and numerical studies on the compressive mechanical properties of the metallic auxetic reentrant honeycomb, Materials & Design, 182, 108036, 2019.
  • 24. Xiao D., Dong Z., Li Y., Wu W., Fang D., Compression behavior of the graded metallic auxetic reentrant honeycomb: Experiment and finite element analysis, Materials Science & Engineering A, 758, 163-171, 2019.
  • 25. Bhate D., Soest J., Reeher J., Patel D., Gibson D., Gerbasi J. & Finfrock M., A validated methodology for predicting the mechanical behavior of Ultem-9085 honeycomb structures manufactured by fused deposition modeling, 27th Annual International Solid Freeform Fabrication Symposium - An Additive Manufacturing Conference, 1-12, 2016.
  • 26. Yalçın B., Ergene B. & Şekeroğlu İ., The Influence of Rib Thickness and Cell Orientation on Tensile Behaviour of various topologies produced from Abs material with additive manufacturing. 5th International Conference on Advances in Mechanical Engineering, Istanbul, 416-421, 17-19 December, 2019.
  • 27. Habib F.N., Lovenitti P., Masood S.H. & Nikzad M., In-plane energy absorption evaluation of 3D printed polymeric honeycombs, Virtual and Physical Prototyping, 12 (2), 117-131, 2017.
  • 28. Zhang X. & Yang D., Mechanical Properties of Auxetic Cellular Material Consisting of Re-Entrant Hexagonal Honeycombs, Materials, 9 (11), 1-13, 2016.
  • 29. Dudka A.A., Platek P., Durejko T., Baranowski P., Malachowski J., Sarzynski M. & Czujko T., Static and Dynamic Loading Behavior of Ti6Al4V Honeycomb Structures Manufactured by Laser Engineered Net Shaping (LENSTM) Technology. Materials, 12 (8), 1-20, 2019.
  • 30. Lee J.W., Soman P., Park J.H., Chen S. & Cho D.W., A Tubular Biomaterial Construct Exhibiting a Negative Poisson’s Ratio. PLOS ONE, 11 (5), 1-14, 2016.
Toplam 30 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Berkay Ergene 0000-0001-6145-1970

Bekir Yalçın 0000-0002-3784-7251

Yayımlanma Tarihi 21 Haziran 2022
Gönderilme Tarihi 31 Mayıs 2021
Kabul Tarihi 27 Ocak 2022
Yayımlandığı Sayı Yıl 2023 Cilt: 38 Sayı: 1

Kaynak Göster

APA Ergene, B., & Yalçın, B. (2022). Eriyik yığma modelleme (EYM) ile üretilen çeşitli hücresel yapıların mekanik performanslarının incelenmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 38(1), 201-218. https://doi.org/10.17341/gazimmfd.945650
AMA Ergene B, Yalçın B. Eriyik yığma modelleme (EYM) ile üretilen çeşitli hücresel yapıların mekanik performanslarının incelenmesi. GUMMFD. Haziran 2022;38(1):201-218. doi:10.17341/gazimmfd.945650
Chicago Ergene, Berkay, ve Bekir Yalçın. “Eriyik yığma Modelleme (EYM) Ile üretilen çeşitli hücresel yapıların Mekanik performanslarının Incelenmesi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 38, sy. 1 (Haziran 2022): 201-18. https://doi.org/10.17341/gazimmfd.945650.
EndNote Ergene B, Yalçın B (01 Haziran 2022) Eriyik yığma modelleme (EYM) ile üretilen çeşitli hücresel yapıların mekanik performanslarının incelenmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 38 1 201–218.
IEEE B. Ergene ve B. Yalçın, “Eriyik yığma modelleme (EYM) ile üretilen çeşitli hücresel yapıların mekanik performanslarının incelenmesi”, GUMMFD, c. 38, sy. 1, ss. 201–218, 2022, doi: 10.17341/gazimmfd.945650.
ISNAD Ergene, Berkay - Yalçın, Bekir. “Eriyik yığma Modelleme (EYM) Ile üretilen çeşitli hücresel yapıların Mekanik performanslarının Incelenmesi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 38/1 (Haziran 2022), 201-218. https://doi.org/10.17341/gazimmfd.945650.
JAMA Ergene B, Yalçın B. Eriyik yığma modelleme (EYM) ile üretilen çeşitli hücresel yapıların mekanik performanslarının incelenmesi. GUMMFD. 2022;38:201–218.
MLA Ergene, Berkay ve Bekir Yalçın. “Eriyik yığma Modelleme (EYM) Ile üretilen çeşitli hücresel yapıların Mekanik performanslarının Incelenmesi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, c. 38, sy. 1, 2022, ss. 201-18, doi:10.17341/gazimmfd.945650.
Vancouver Ergene B, Yalçın B. Eriyik yığma modelleme (EYM) ile üretilen çeşitli hücresel yapıların mekanik performanslarının incelenmesi. GUMMFD. 2022;38(1):201-18.

Cited By